数据结构与算法学习笔记八-二叉树的顺序存储表示法和实现(C语言)

本文主要是介绍数据结构与算法学习笔记八-二叉树的顺序存储表示法和实现(C语言),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

1.数组和结构体相关的一些知识

1.数组

2.结构体数组

3.递归遍历数组

2.二叉树的顺序存储表示法和实现

1.定义

2.初始化

3.先序遍历二叉树

4.中序遍历二叉树

5.后序遍历二叉树

6.完整代码


前言

        二叉树的非递归的表示和实现。

1.数组和结构体相关的一些知识

1.数组

        在C语言中,可以将数组作为参数传递给函数。当数组作为参数传递时,实际上传递给函数的是数组的地址,而不是数组的副本。这意味着,在函数内部对数组进行的修改会影响到原始数组。

        例如在下面的代码中,我们把数组名作为参数传递给modifyArray函数,在函数中修改数组的值,main函数打印原来的数组,会发现原来的数组也被修改。

#include <stdio.h>
#include <stdlib.h>void modifyArray(int *s,int size){for (int i = 0; i < size; i++) {s[i] = s[i] * 10;}printf("\n");
}int main(int argc, const char *argv[]) {int arr[5] = {1,2,3,4,5};int length = sizeof(arr) / sizeof(arr[0]);printf("修改之前的数组:\n");for (int i =  0; i < length;i++) {printf("%d\t",arr[i]);}modifyArray(arr,length);printf("\n修改之前的数组:\n");for (int i =  0; i < length;i++) {printf("%d\t",arr[i]);}printf("\n");return 0;
}

        当然上述的函数我们还可以写成数组的形式。

void modifyArray(int s[],int size){for (int i = 0; i < size; i++) {s[i] = s[i] * 10;}printf("\n");
}

2.结构体数组

        在上述的代码中,我们使用数组操作基本数据类型非常的方便。当时当我们需要自定义数据类型的时候,上述的代码就不满足我们的需求了。例如我们需要表示学生数组的时候,因为每个学生都有自己的属性,姓名,年龄等等,这个时候我们就需要使用结构体数组。

        在数据结构中,我们有时候需要使用数组表示一些数据类型,因此有时候我们需要把数组声明为全局函数。代码实例如下:

#include <stdio.h>
#include <stdlib.h>// 学生结构体
typedef struct {char name[50]; // 姓名int age;       // 年龄
} Student;int main() {// 创建一个包含3个学生对象的数组并初始化Student students[3] = {{"张三", 20},{"李四", 21},{"王五", 22}};// 输出学生信息printf("学生信息如下:\n");for (int i = 0; i < 3; i++) {printf("学生姓名:%s\n", students[i].name);printf("学生年龄:%d\n", students[i].age);}return 0;
}

3.递归遍历数组

        在我们使用数组表示二叉树的时候,需要递归遍历数组,这里需要您了解数组递归的写法。

        在这个示例中以下面的代码为例,,recursivePrint 函数用于递归地遍历数组并打印数组中的元素。它接受三个参数:arr 表示数组,size 表示数组的大小,index表示当前遍历的索引位置。函数首先检查索引是否超出数组范围,如果是,则递归终止。否则,它打印当前索引处的数组元素,然后递归调用自身,传入下一个索引位置。在 main函数中,我们创建一个数组并调recursivePrint 函数来遍历打印数组元素。

#include <stdio.h>// 递归遍历数组并打印数组中的元素
void recursivePrint(int arr[], int size, int index) {// 递归终止条件:当索引超出数组范围时,结束递归if (index >= size) {return;}// 打印当前索引处的数组元素printf("%d ", arr[index]);// 递归调用,遍历下一个元素recursivePrint(arr, size, index + 1);
}int main() {int arr[] = {1, 2, 3, 4, 5};int size = sizeof(arr) / sizeof(arr[0]);printf("数组元素为:");recursivePrint(arr, size, 0);printf("\n");return 0;
}

2.二叉树的顺序存储表示法和实现

     图1.完全二叉树

               图2.普通二叉树

        我们使用一组连续的存储空间表示树的结构。按照从上到下、从左到右的顺序存储完全二叉树的的节点,对于一般二叉树上的点,我们使用0表示不存在该节点。

        对于图1来说,内存中的存储结构如下图3所示。

        图3.完全二叉树的存储结构

        如果不是二叉树,假如我们使用0表示结点不存在,图2所示的存储结构如图4所示。

图4.普通二叉树

        下面我们看看如果使用代码来实现。

1.定义

        我们使用数组实现二叉树的顺序存储

#define MAX_TREE_SIZE 100typedef char TElemType;
typedef int Status;typedef TElemType SqBiTree[MAX_TREE_SIZE];

2.初始化

        初始化时候,将数组中的元素全部设为"\0"

// 初始化二叉树
Status initSqBiTree(SqBiTree tree) {for (int i = 0; i< MAX_TREE_SIZE; i++) {tree[i] = '\0';}// 将二叉树所有元素初始化为空return 1; // 初始化成功
}

3.先序遍历二叉树

        遍历二叉树之前我们观察下根节点、左子树节点、右子树节点的规律。

        根节点的下标为a[0].左子树上的节点的下标依次为1,3,...2*i+1,右子树上的节点的下标依次为2,4,...2*i+2

// 前序遍历二叉树
void preOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 访问根节点printf("%c ", tree[node_index]);// 递归遍历左子树preOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树preOrderTraverse(tree, 2 * node_index + 2);}
}

4.中序遍历二叉树

// 中序遍历二叉树
void inOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树inOrderTraverse(tree, 2 * node_index + 1);// 访问根节点printf("%c ", tree[node_index]);// 递归遍历右子树inOrderTraverse(tree, 2 * node_index + 2);}
}

5.后序遍历二叉树

// 后序遍历二叉树
void postOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树postOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树postOrderTraverse(tree, 2 * node_index + 2);// 访问根节点printf("%c ", tree[node_index]);}
}

6.完整代码

#include <stdio.h>#define MAX_TREE_SIZE 100typedef char TElemType;
typedef int Status;typedef TElemType SqBiTree[MAX_TREE_SIZE];// 初始化二叉树
Status initSqBiTree(SqBiTree tree) {for (int i = 0; i< MAX_TREE_SIZE; i++) {tree[i] = '\0';}// 将二叉树所有元素初始化为空return 1; // 初始化成功
}// 前序遍历二叉树
void preOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 访问根节点printf("%c ", tree[node_index]);// 递归遍历左子树preOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树preOrderTraverse(tree, 2 * node_index + 2);}
}// 中序遍历二叉树
void inOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树inOrderTraverse(tree, 2 * node_index + 1);// 访问根节点printf("%c ", tree[node_index]);// 递归遍历右子树inOrderTraverse(tree, 2 * node_index + 2);}
}// 后序遍历二叉树
void postOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树postOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树postOrderTraverse(tree, 2 * node_index + 2);// 访问根节点printf("%c ", tree[node_index]);}
}int main(int argc, const char *argv[]) {SqBiTree tree;// 初始化二叉树initSqBiTree(tree);// 构造一个简单的二叉树,根节点为'A',左子树为'B',右子树为'C'tree[0] = 'A';tree[1] = 'B';tree[2] = 'C';tree[3] = 'D';tree[4] = 'E';tree[5] = '\0';tree[6] = '\0';// 输出初始化后的二叉树printf("前序遍历结果为:");preOrderTraverse(tree, 0);printf("\n");printf("中序遍历结果为:");inOrderTraverse(tree, 0);printf("\n");printf("后序遍历结果为:");postOrderTraverse(tree, 0);printf("\n");return 0;
}// 后序遍历二叉树
void postOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树postOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树postOrderTraverse(tree, 2 * node_index + 2);// 访问根节点printf("%c ", tree[node_index]);}
}int main(int argc, const char *argv[]) {SqBiTree tree;// 初始化二叉树initSqBiTree(tree);// 构造一个简单的二叉树,根节点为'A',左子树为'B',右子树为'C'tree[0] = 'A';tree[1] = 'B';tree[2] = 'C';tree[3] = 'D';tree[4] = 'E';tree[5] = '\0';tree[6] = '\0';// 输出初始化后的二叉树printf("前序遍历结果为:");preOrderTraverse(tree, 0);printf("\n");printf("中序遍历结果为:");inOrderTraverse(tree, 0);printf("\n");printf("后序遍历结果为:");postOrderTraverse(tree, 0);printf("\n");return 0;
}

        在main函数中,我们构建了一个图2所示的二叉树,控制台打印信息如下:

这篇关于数据结构与算法学习笔记八-二叉树的顺序存储表示法和实现(C语言)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979224

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

C#实现一键批量合并PDF文档

《C#实现一键批量合并PDF文档》这篇文章主要为大家详细介绍了如何使用C#实现一键批量合并PDF文档功能,文中的示例代码简洁易懂,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言效果展示功能实现1、添加文件2、文件分组(书签)3、定义页码范围4、自定义显示5、定义页面尺寸6、PDF批量合并7、其他方法

SpringBoot实现不同接口指定上传文件大小的具体步骤

《SpringBoot实现不同接口指定上传文件大小的具体步骤》:本文主要介绍在SpringBoot中通过自定义注解、AOP拦截和配置文件实现不同接口上传文件大小限制的方法,强调需设置全局阈值远大于... 目录一  springboot实现不同接口指定文件大小1.1 思路说明1.2 工程启动说明二 具体实施2

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Java实现在Word文档中添加文本水印和图片水印的操作指南

《Java实现在Word文档中添加文本水印和图片水印的操作指南》在当今数字时代,文档的自动化处理与安全防护变得尤为重要,无论是为了保护版权、推广品牌,还是为了在文档中加入特定的标识,为Word文档添加... 目录引言Spire.Doc for Java:高效Word文档处理的利器代码实战:使用Java为Wo

Java实现远程执行Shell指令

《Java实现远程执行Shell指令》文章介绍使用JSch在SpringBoot项目中实现远程Shell操作,涵盖环境配置、依赖引入及工具类编写,详解分号和双与号执行多指令的区别... 目录软硬件环境说明编写执行Shell指令的工具类总结jsch(Java Secure Channel)是SSH2的一个纯J