数据结构与算法学习笔记八-二叉树的顺序存储表示法和实现(C语言)

本文主要是介绍数据结构与算法学习笔记八-二叉树的顺序存储表示法和实现(C语言),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

1.数组和结构体相关的一些知识

1.数组

2.结构体数组

3.递归遍历数组

2.二叉树的顺序存储表示法和实现

1.定义

2.初始化

3.先序遍历二叉树

4.中序遍历二叉树

5.后序遍历二叉树

6.完整代码


前言

        二叉树的非递归的表示和实现。

1.数组和结构体相关的一些知识

1.数组

        在C语言中,可以将数组作为参数传递给函数。当数组作为参数传递时,实际上传递给函数的是数组的地址,而不是数组的副本。这意味着,在函数内部对数组进行的修改会影响到原始数组。

        例如在下面的代码中,我们把数组名作为参数传递给modifyArray函数,在函数中修改数组的值,main函数打印原来的数组,会发现原来的数组也被修改。

#include <stdio.h>
#include <stdlib.h>void modifyArray(int *s,int size){for (int i = 0; i < size; i++) {s[i] = s[i] * 10;}printf("\n");
}int main(int argc, const char *argv[]) {int arr[5] = {1,2,3,4,5};int length = sizeof(arr) / sizeof(arr[0]);printf("修改之前的数组:\n");for (int i =  0; i < length;i++) {printf("%d\t",arr[i]);}modifyArray(arr,length);printf("\n修改之前的数组:\n");for (int i =  0; i < length;i++) {printf("%d\t",arr[i]);}printf("\n");return 0;
}

        当然上述的函数我们还可以写成数组的形式。

void modifyArray(int s[],int size){for (int i = 0; i < size; i++) {s[i] = s[i] * 10;}printf("\n");
}

2.结构体数组

        在上述的代码中,我们使用数组操作基本数据类型非常的方便。当时当我们需要自定义数据类型的时候,上述的代码就不满足我们的需求了。例如我们需要表示学生数组的时候,因为每个学生都有自己的属性,姓名,年龄等等,这个时候我们就需要使用结构体数组。

        在数据结构中,我们有时候需要使用数组表示一些数据类型,因此有时候我们需要把数组声明为全局函数。代码实例如下:

#include <stdio.h>
#include <stdlib.h>// 学生结构体
typedef struct {char name[50]; // 姓名int age;       // 年龄
} Student;int main() {// 创建一个包含3个学生对象的数组并初始化Student students[3] = {{"张三", 20},{"李四", 21},{"王五", 22}};// 输出学生信息printf("学生信息如下:\n");for (int i = 0; i < 3; i++) {printf("学生姓名:%s\n", students[i].name);printf("学生年龄:%d\n", students[i].age);}return 0;
}

3.递归遍历数组

        在我们使用数组表示二叉树的时候,需要递归遍历数组,这里需要您了解数组递归的写法。

        在这个示例中以下面的代码为例,,recursivePrint 函数用于递归地遍历数组并打印数组中的元素。它接受三个参数:arr 表示数组,size 表示数组的大小,index表示当前遍历的索引位置。函数首先检查索引是否超出数组范围,如果是,则递归终止。否则,它打印当前索引处的数组元素,然后递归调用自身,传入下一个索引位置。在 main函数中,我们创建一个数组并调recursivePrint 函数来遍历打印数组元素。

#include <stdio.h>// 递归遍历数组并打印数组中的元素
void recursivePrint(int arr[], int size, int index) {// 递归终止条件:当索引超出数组范围时,结束递归if (index >= size) {return;}// 打印当前索引处的数组元素printf("%d ", arr[index]);// 递归调用,遍历下一个元素recursivePrint(arr, size, index + 1);
}int main() {int arr[] = {1, 2, 3, 4, 5};int size = sizeof(arr) / sizeof(arr[0]);printf("数组元素为:");recursivePrint(arr, size, 0);printf("\n");return 0;
}

2.二叉树的顺序存储表示法和实现

     图1.完全二叉树

               图2.普通二叉树

        我们使用一组连续的存储空间表示树的结构。按照从上到下、从左到右的顺序存储完全二叉树的的节点,对于一般二叉树上的点,我们使用0表示不存在该节点。

        对于图1来说,内存中的存储结构如下图3所示。

        图3.完全二叉树的存储结构

        如果不是二叉树,假如我们使用0表示结点不存在,图2所示的存储结构如图4所示。

图4.普通二叉树

        下面我们看看如果使用代码来实现。

1.定义

        我们使用数组实现二叉树的顺序存储

#define MAX_TREE_SIZE 100typedef char TElemType;
typedef int Status;typedef TElemType SqBiTree[MAX_TREE_SIZE];

2.初始化

        初始化时候,将数组中的元素全部设为"\0"

// 初始化二叉树
Status initSqBiTree(SqBiTree tree) {for (int i = 0; i< MAX_TREE_SIZE; i++) {tree[i] = '\0';}// 将二叉树所有元素初始化为空return 1; // 初始化成功
}

3.先序遍历二叉树

        遍历二叉树之前我们观察下根节点、左子树节点、右子树节点的规律。

        根节点的下标为a[0].左子树上的节点的下标依次为1,3,...2*i+1,右子树上的节点的下标依次为2,4,...2*i+2

// 前序遍历二叉树
void preOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 访问根节点printf("%c ", tree[node_index]);// 递归遍历左子树preOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树preOrderTraverse(tree, 2 * node_index + 2);}
}

4.中序遍历二叉树

// 中序遍历二叉树
void inOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树inOrderTraverse(tree, 2 * node_index + 1);// 访问根节点printf("%c ", tree[node_index]);// 递归遍历右子树inOrderTraverse(tree, 2 * node_index + 2);}
}

5.后序遍历二叉树

// 后序遍历二叉树
void postOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树postOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树postOrderTraverse(tree, 2 * node_index + 2);// 访问根节点printf("%c ", tree[node_index]);}
}

6.完整代码

#include <stdio.h>#define MAX_TREE_SIZE 100typedef char TElemType;
typedef int Status;typedef TElemType SqBiTree[MAX_TREE_SIZE];// 初始化二叉树
Status initSqBiTree(SqBiTree tree) {for (int i = 0; i< MAX_TREE_SIZE; i++) {tree[i] = '\0';}// 将二叉树所有元素初始化为空return 1; // 初始化成功
}// 前序遍历二叉树
void preOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 访问根节点printf("%c ", tree[node_index]);// 递归遍历左子树preOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树preOrderTraverse(tree, 2 * node_index + 2);}
}// 中序遍历二叉树
void inOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树inOrderTraverse(tree, 2 * node_index + 1);// 访问根节点printf("%c ", tree[node_index]);// 递归遍历右子树inOrderTraverse(tree, 2 * node_index + 2);}
}// 后序遍历二叉树
void postOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树postOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树postOrderTraverse(tree, 2 * node_index + 2);// 访问根节点printf("%c ", tree[node_index]);}
}int main(int argc, const char *argv[]) {SqBiTree tree;// 初始化二叉树initSqBiTree(tree);// 构造一个简单的二叉树,根节点为'A',左子树为'B',右子树为'C'tree[0] = 'A';tree[1] = 'B';tree[2] = 'C';tree[3] = 'D';tree[4] = 'E';tree[5] = '\0';tree[6] = '\0';// 输出初始化后的二叉树printf("前序遍历结果为:");preOrderTraverse(tree, 0);printf("\n");printf("中序遍历结果为:");inOrderTraverse(tree, 0);printf("\n");printf("后序遍历结果为:");postOrderTraverse(tree, 0);printf("\n");return 0;
}// 后序遍历二叉树
void postOrderTraverse(SqBiTree tree, int node_index) {if (node_index < MAX_TREE_SIZE && tree[node_index] != '\0') {// 递归遍历左子树postOrderTraverse(tree, 2 * node_index + 1);// 递归遍历右子树postOrderTraverse(tree, 2 * node_index + 2);// 访问根节点printf("%c ", tree[node_index]);}
}int main(int argc, const char *argv[]) {SqBiTree tree;// 初始化二叉树initSqBiTree(tree);// 构造一个简单的二叉树,根节点为'A',左子树为'B',右子树为'C'tree[0] = 'A';tree[1] = 'B';tree[2] = 'C';tree[3] = 'D';tree[4] = 'E';tree[5] = '\0';tree[6] = '\0';// 输出初始化后的二叉树printf("前序遍历结果为:");preOrderTraverse(tree, 0);printf("\n");printf("中序遍历结果为:");inOrderTraverse(tree, 0);printf("\n");printf("后序遍历结果为:");postOrderTraverse(tree, 0);printf("\n");return 0;
}

        在main函数中,我们构建了一个图2所示的二叉树,控制台打印信息如下:

这篇关于数据结构与算法学习笔记八-二叉树的顺序存储表示法和实现(C语言)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979224

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配