[Algorithm][递归][斐波那契数列模型][第N个泰波那契数][三步问题][使用最小花费爬楼][解码方法]详细讲解

本文主要是介绍[Algorithm][递归][斐波那契数列模型][第N个泰波那契数][三步问题][使用最小花费爬楼][解码方法]详细讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

  • 1.第 N 个泰波那契数
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 2.三步问题
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 3.使用最小花费爬楼梯
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现
  • 4.解码方法
    • 1.题目链接
    • 2.算法原理详解
    • 3.代码实现


1.第 N 个泰波那契数

1.题目链接

  • 第 N 个泰波那契数

2.算法原理详解

  • 题目解析
    请添加图片描述

  • 思路

    • 确定状态表示 -> dp[i]的含义
      • i个泰波那契数的值
    • 推导状态转移方程
      • dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
    • 初始化
      • dp[0] = 0, dp[1] = 1, dp[2] = 1
    • 确定填表顺序:从左向右
    • 确定返回值:dp[n]
  • 空间优化:滚动数组
    请添加图片描述


3.代码实现

// v1.0 动态规划
int tribonacci(int n) 
{// 边界情况处理if(n == 0 || n == 1) return n;vector<int> dp(n + 1, 0);dp[1] = dp[2] = 1;for(int i = 3; i <= n; i++){dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3];}return dp[n];
}
-------------------------------------------------------------------
// v2.0 动态规划 + 滚动数组空间优化
int tribonacci(int n) 
{// 边界情况处理if(n == 0 || n == 1) return n;int a = 0, b = 1, c = 1, ret = 1;for(int i = 3; i <= n; i++){ret = a + b + c;a = b, b = c, c = ret; // 滚动数组}return ret;
}

2.三步问题

1.题目链接

  • 三步问题

2.算法原理详解

  • 题目解析
    请添加图片描述

  • 思路

    • 确定状态表示 -> dp[i]的含义
      • 到达i位置时,一共有多少种方法
    • 推导状态转移方程
      • dp[i] = dp[i - 1] + dp[i - 2] + dp[i - 3]
    • 初始化
      • dp[1] = 1, dp[2] = 2, dp[3] = 4
    • 确定填表顺序:从左向右
    • 确定返回值:dp[n]

3.代码实现

int waysToStep(int n) 
{// 边界情况处理if(n == 1 || n == 2) return n;if(n == 3) return 4;const int MOD = 1e9 + 7;vector<int> dp(n + 1, 0);dp[1] = 1, dp[2] = 2, dp[3] = 4;for(int i = 4; i <= n; i++){dp[i] = ((dp[i - 1] + dp[i - 2]) % MOD + dp[i - 3]) % MOD;}return dp[n];
} 

3.使用最小花费爬楼梯

1.题目链接

  • 使用最小花费爬楼梯

2.算法原理详解

  • 本题给出两种思路,本质相同,只是思考的方向不同
  • 思路一
    • 确定状态表示 -> dp[i]的含义
      • i位置为结尾
      • 到达i位置时,最小花费
    • 推导状态转移方程
      • dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2])
    • 初始化
      • dp[0] = dp[1] = 0
    • 确定填表顺序:从左向右
    • 确定返回值:dp[n]
  • 思路二
    • 确定状态表示 -> dp[i]的含义
      • i位置为起点
      • i位置出发,到达楼顶,此时的最小花费
    • 推导状态转移方程
      • dp[i] = cost[i] + min(dp[i + 1], dp[i + 2])
    • 初始化
      • dp[n - 1] = cost[n - 1], dp[n - 2] = cost[n - 2]
    • 确定填表顺序:从右向左
    • 确定返回值:min(dp[0], dp[1])

3.代码实现

// v1.0 以i位置为结尾
int minCostClimbingStairs(vector<int>& cost) 
{int n = cost.size();vector<int> dp(n + 1);for(int i = 2; i <= n; i++){dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[n];
}
----------------------------------------------------------------------------
// v2.0 以i位置为起点
int minCostClimbingStairs(vector<int>& cost) 
{int n = cost.size();vector<int> dp(n);dp[n - 1] = cost[n - 1], dp[n - 2] = cost[n - 2];for(int i = n - 3; i >= 0; i--){dp[i] = cost[i] + min(dp[i + 1], dp[i + 2]);}return min(dp[0], dp[1]);
}

4.解码方法

1.题目链接

  • 解码方法

2.算法原理详解

  • 思路
    • 确定状态表示 -> dp[i]的含义

      • i位置为结尾时,解码方法的总数
    • 推导状态转移方程

      • 如果条件都成立dp[i] = dp[i - 1] + dp[i - 2]
        请添加图片描述
    • 初始化

      • dp[0]:只解码一个字符
        • 1 <-- 1<=a<=9
        • 0 <-- 0
      • dp[1]:只解码两个字符
        • 0 <-- 解码不出来
        • 1 <-- 两个解码出一个
        • 2 <-- 两个解码出一个 + 一个解码出一个
    • 确定填表顺序:从左向右

    • 确定返回值:dp[n - 1]

  • 优化边界及初始化dp表多开一个"虚拟结点"
    • 相当于把原来dp[1]放到了后面填表的逻辑当中了,不用进行繁琐的初始化了
    • 注意事项
      • 虚拟节点里面的值,要保证后面填表时是正确的
      • 下标的映射关系
    • 怎样处理?
      • 此时dp[1]的初始化相当于原来的dp[0]的初始化,不用做特殊处理
      • dp[0] = 1做特殊处理
        • 因为此时的dp[2]在统一的逻辑里面,会去看dp[0]dp[1]的值
          • 如果条件都成立dp[2] = dp[0] + dp[1]
        • 此时如果dp[0] == 0,相当于dp[2]前面少了一种可能
          请添加图片描述

3.代码实现

// v1.0
int numDecodings(string s) 
{int n = s.size();vector<int> dp(n, 0);dp[0] = s[0] != '0';// 处理边界情况if(s.size() == 1) return dp[0];// 一个位置解码出来一个if(s[0] != '0' && s[1] != '0'){dp[1]++;}// 两个位置解码出来一个int tmp = (s[0] - '0') * 10 + s[1] - '0';if(tmp >= 10 && tmp <= 26){dp[1]++;}// Dynamic Planfor(int i = 2; i < n; i++){// 一个位置解码出来一个if(s[i] != '0'){dp[i] += dp[i - 1];}// 两个位置解码出来一个int tmp = (s[i - 1] - '0') * 10 + s[i] - '0';if(tmp >= 10 && tmp <= 26){dp[i] += dp[i - 2];}}return dp[n - 1];
}
----------------------------------------------------------------------
// v2.0 优化
int numDecodings(string s) 
{int n = s.size();vector<int> dp(n + 1, 0);dp[0] = 1;dp[1] = s[0] != '0';// Dynamic Planfor(int i = 2; i <= n; i++){// 一个位置解码出来一个if(s[i - 1] != '0'){dp[i] += dp[i - 1];}// 两个位置解码出来一个int tmp = (s[i - 2] - '0') * 10 + s[i - 1] - '0';if(tmp >= 10 && tmp <= 26){dp[i] += dp[i - 2];}}return dp[n];
}

这篇关于[Algorithm][递归][斐波那契数列模型][第N个泰波那契数][三步问题][使用最小花费爬楼][解码方法]详细讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/979046

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时