基于OpenCV对胸部CT图像的预处理

2024-05-11 00:12

本文主要是介绍基于OpenCV对胸部CT图像的预处理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 . 传作灵感

胸部CT中所包含的噪声比较多,基于OpenCV简单的做一些处理,降低后续模型训练的难度。

2. 图像的合成

在语义分割任务中有的时候需要将原图(imput)和标注数据(groudtruth)合成一幅图像,观察图像分割的效果,涉及的代码如下:

import matplotlib.pyplot as plt
import os
import pandas as pd
from scipy.ndimage.interpolation import zoom
from PIL import Image
from matplotlib import image
import matplotlib.pyplot as pltimg=Image.open('dataset/train_image/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059_66.jpg',)
mask= Image.open('dataset/train_mask/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059_66.jpg')plt.subplot(2, 2, 1)
plt.imshow(img,cmap='bone')
plt.subplot(2, 2, 2)
plt.imshow(mask,cmap='bone')
# 图像融合显示
plt.subplot(2, 2, 3)
#原图以0.6的比例加入,mask以0.4的比例加入
plt.imshow(img, alpha=0.6,cmap='bone')
plt.imshow(mask, alpha=0.4,cmap='gray')
plt.show()

合成的效果如图所示:

还有一种方法使用Image.blend(img, mask, 0.5)函数,具体代码如下:

img=Image.open('dataset/train_image/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059_66.jpg',)
mask= Image.open('dataset/train_mask/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059_66.jpg')
#
img = img.convert('L')
mask = mask.convert('L')img.show()
mask.show()con = Image.blend(img, mask, 0.5)
con.show()

合成的效果如下:

3. 高斯滤波

img =cv.imread('dataset/train_image/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059_66.jpg', cv.IMREAD_GRAYSCALE)
mask = cv.imread('dataset/train_mask/1.3.6.1.4.1.14519.5.2.1.6279.6001.109002525524522225658609808059_66.jpg', cv.IMREAD_GRAYSCALE)
cv.imshow("img",img)
# 高斯滤波
img_Gauss=cv.GaussianBlur(img,(7,7),0,0)
dst2 = cv.GaussianBlur(img, (9, 9), 0, 0)
cv.imshow("img_Gauss", img_Gauss)

效果如下:

   

3.中值滤波

img_median = cv.medianBlur(img,5)
cv.imshow("img_median", img_median)

4.适应阈值滤波

#自适应阈值滤波
t2,img_ostu = cv.threshold(img_median, 0,255, cv.THRESH_OTSU)
t2,img_ostu = cv.threshold(img_median, 0,255,cv.THRESH_BINARY+cv.THRESH_OTSU)
cv.imshow("img_ostu", img_ostu)

这篇关于基于OpenCV对胸部CT图像的预处理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/977957

相关文章

C语言进阶(预处理命令详解)

《C语言进阶(预处理命令详解)》文章讲解了宏定义规范、头文件包含方式及条件编译应用,强调带参宏需加括号避免计算错误,头文件应声明函数原型以便主函数调用,条件编译通过宏定义控制代码编译,适用于测试与模块... 目录1.宏定义1.1不带参宏1.2带参宏2.头文件的包含2.1头文件中的内容2.2工程结构3.条件编

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Python如何将OpenCV摄像头视频流通过浏览器播放

《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.