【算法刨析】完全背包

2024-05-10 09:12
文章标签 算法 背包 完全 刨析

本文主要是介绍【算法刨析】完全背包,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完全背包与01背包的区别

01背包对于一个物品只能选择一次,但是完全背包可以选择任意次; 

思路

和01背包类似,01背包我们只需要判断选或不选,完全背包也是如此,不同的是,对于这个物品我们在判断选后在增加一次选择的机会,直到不选,跳转至下一个物品即可;

一般代码:

 f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);

第k次,不选的话就是它本身,选的话就是直接选择k次即可;

当然这个代码在数据稍微大一点的时候就会超出时间限制;

#include<iostream>
using namespace std;
const int N=1004;
int f[N][N];
int w[N],v[N];int main()
{int n,m;cin>>n>>m;for(int i=1;i<=n;i++){cin>>v[i]>>w[i];}for(int i=1;i<=n;i++){for(int j=0;j<=m;j++){for(int k=0;k*v[i]<=j;k++){f[i][j]=max(f[i][j],f[i-1][j-k*v[i]]+k*w[i]);}}}cout<<f[n][m]<<endl;
}

优化思路

上面代码会超出时间限制是因为三层循环,下面我们来把第三层循环优化掉:

f[i][j]=max(f[i][j],f[i-1][j-v]+w,f[i-1][j-2*v]+2*w,f[i-1][j-3*v]+3*w......f[i-1][j-k*v]+k*w)

f[i][j-v]=max(             f[i][j-v],f[i-1][j-2*v]+w,f[i-1][j-3*v]+2*w......f[i-1][j-k*v]+k*w)

f[i-1][j-v]+w,f[i-1][j-2*v]+2*w,f[i-1][j-3*v]+3*w......f[i-1][j-k*v]+k*w 不就是f[i][j-v]+w

那么我们可以得到:f[i][j]=max(f[i][j],f[i-1][j-v]+w)

这样我们不就可以不用写第三层循环了吗?

直接用:

            f[i][j]=f[i-1][j];
            if(j>=v[i])
            f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);

优化代码:

#include<iostream>
using namespace std;
const int N=1004;
int f[N][N];
int w[N],v[N];int main()
{int n,m;cin>>n>>m;for(int i=1;i<=n;i++){cin>>v[i]>>w[i];}for(int i=1;i<=n;i++){for(int j=0;j<=m;j++){f[i][j]=f[i-1][j];if(j>=v[i])f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);}}cout<<f[n][m]<<endl;
}

我们来看一下核心代码:

            f[i][j]=f[i-1][j];
            if(j>=v[i])
            f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);

还记得01背包的代码吗?
             f[i][j] = f[i - 1][j];

             if(j>=v[i])
             f[i][j]= max( f[i - 1][j],f[i - 1][j - v[i]] + w[i] );

是不是只有(红色标记):

  f[i][j]= max( f[i - 1][j],f[i - 1][j - v[i]] + w[i] );不同

再次优化代码:

注意:

这里我的j的大小是从小到大开始的:

01背包中,f[i][j]= max( f[i - 1][j],f[i - 1][j - v[i]] + w[i] );对于f[j]就相当于f[i-1][j]的大小,如果从小到大遍历,那么f[i-1][j]的大小就会发现变化,那么优化后的代码就不满足我们所推导的公式,所以我们要从大到小;

类比于01背包,完全背包的公式, f[i][j]=max(f[i][j],f[i][j-v[i]]+w[i]);对于这个公式如果从大到小就会改变f[i][j]的大小,不满足所推导的公式;

#include<iostream>
#include<cstring>
using namespace std;
const int N=1e4;
int f[N];
int w[N],v[N];int main()
{int n,m;cin>>n>>m;for(int i=0;i<n;i++)cin>>v[i]>>w[i];for(int i=0;i<n;i++){for(int j=v[i];j<=m;j++){f[j]=max(f[j],f[j-v[i]]+w[i]);}}cout<<f[m]<<endl;
}

以上就是全部内容!!

这篇关于【算法刨析】完全背包的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/976014

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Python使用Reflex构建现代Web应用的完全指南

《Python使用Reflex构建现代Web应用的完全指南》这篇文章为大家深入介绍了Reflex框架的设计理念,技术特性,项目结构,核心API,实际开发流程以及与其他框架的对比和部署建议,感兴趣的小伙... 目录什么是 ReFlex?为什么选择 Reflex?安装与环境配置构建你的第一个应用核心概念解析组件

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时