智能BI(后端)-- 系统优化(安全性,数据存储,限流)

2024-05-09 13:52

本文主要是介绍智能BI(后端)-- 系统优化(安全性,数据存储,限流),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 安全性
  • todo 数据存储
  • 限流
    • 限流的几种算法
    • 限流粒度
    • 限流的实现
      • 本地限流(单机限流)
      • Redisson实现分布式限流(多机限流)

安全性

问题引入:如果用户上传一个超大的文件怎么办?比如1000G?
预防:
只要涉及到用户自主上传的操作,一定要校验文件(图像)
校验什么?

  • 文件的大小
  • 文件的后缀
  • 文件的内容(成本高一点)
  • 文件的合规性,比如敏感内容(建议用第三方审核功能),todo 接入腾讯云的图片万象数据审核(COS对象存储的审核功能)

代码校验实现:

        //校验文件大小long ONE_MB = 1024 * 1024l;long size = multipartFile.getSize();ThrowUtils.throwIf(size > ONE_MB,ErrorCode.PARAMS_ERROR,"文件过大");//校验后缀名String originalFilename = multipartFile.getOriginalFilename();String suffix = FileUtil.getSuffix(originalFilename);List<String> validSuffix = Arrays.asList("png","jpg","svg","webp","jpeg");ThrowUtils.throwIf(!validSuffix.contains(suffix),ErrorCode.PARAMS_ERROR,"文件后缀非法");

todo 数据存储

现状:我们把每个图表的原始数据全部放在了同一个数据表(chart表)的字段里
问题:

  1. 如果用户上传的原始数据量很大,图表数日益增多,查询chart表就会很慢
  2. 对于BI平台,用户是有查看原始数据,对原始数据进行简单查询的需求的,现在如果把所有数据放在一个字段(列)中,查询时,只能取出这个列的所有内容

**解决方案:分库分表:

**把每个图表对应的原始数据单独保存为一个新的数据表,而不是都存在一个字段里
优点:

  1. 存储时,能够分开存储,互不影响(也能增加安全性)
  2. 查询时,可以使用各种sql语句灵活取出需要的字段,查询性能更快

todo 实现:动态sql,这里鱼皮也实现了,不过没有应用,只是测试,等等复习下知识再说

限流

现在的问题:使用系统是需要消耗成本的,用户有可能疯狂刷量,让你破产
解决问题:

  1. 控制成本 -> 限制用户调用总次数
  2. 用户在短时间内疯狂使用,导致服务器资源被占满,其他用户无法使用->限流

思考:限流阈值多大合适?参考正常用户的使用,比如限制单个用户在每秒只能使用一次

限流的几种算法

  1. 固定窗口限流
  2. 滑动窗口限流
  3. 漏桶限流
  4. 领令牌桶限流

限流粒度

  1. 针对某个方法限流
  2. 针对某个用户限流
  3. 针对用户调用某个方法限流

限流的实现

本地限流(单机限流)

每个服务器单独限流,一般适用于单体项目,你的项目只有一个服务器
Guava RateLimiter

import com.google.common.util.concurrent.RateLimiter;public static void main(String[] args) {// 每秒限流5个请求RateLimiter limiter = RateLimiter.create(5.0);while (true) {if (limiter.tryAcquire()) {// 处理请求} else {// 超过流量限制,需要做何处理}}
}

Redisson实现分布式限流(多机限流)

[官方项目仓库和文档]

  1. 引入依赖
<dependency><groupId>org.redisson</groupId><artifactId>redisson</artifactId><version>3.28.0</version>
</dependency>  
  1. 创建Redisson配置类
package com.yupi.springbootinit.config;import io.lettuce.core.RedisClient;
import io.swagger.models.auth.In;
import lombok.Data;
import org.redisson.Redisson;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;@Configuration
@ConfigurationProperties("spring.redis")
@Data
public class RedissonConfig {private Integer database;private String host;private Integer port;// spring启动时,会自动创建一个RedissonClient对象@Beanpublic RedissonClient getRedissonClient() {// 1.创建配置对象Config config = new Config();// 2. 添加单机Redisson配置config.useSingleServer()// 设置数据库.setDatabase(1)//设置redis的地址.setAddress("redis://" + host + ":" + port);//3..创建Redisson实例RedissonClient redissonClient = Redisson.create(config);return redissonClient;}}
  1. 创建通用限流管理类RedisLimiterManager

(专门提供 RedisLimiter 限流基础服务),manager包存放通用模版,没有业务逻辑,可以放在任何一个项目里

package com.yupi.springbootinit.manager;import com.yupi.springbootinit.common.ErrorCode;
import com.yupi.springbootinit.exception.BusinessException;
import org.redisson.api.RRateLimiter;
import org.redisson.api.RateIntervalUnit;
import org.redisson.api.RateType;
import org.redisson.api.RedissonClient;
import org.springframework.stereotype.Service;import javax.annotation.Resource;@Service
public class RedisLimiterManager {@Resourceprivate RedissonClient redissonClient;public void doRateLimit(String key){// 创建一个名称为rateLimiter的限流器RRateLimiter rateLimiter = redissonClient.getRateLimiter(key);// 限流器的统计规则(每秒2个请求;连续的请求,最多只能有1个请求被允许通过)// RateType.OVERALL表示速率限制作用于整个令牌桶,即限制所有请求的速率rateLimiter.trySetRate(RateType.OVERALL,2,1, RateIntervalUnit.SECONDS);// 每当一个操作来了后,请求一个令牌boolean canop = rateLimiter.tryAcquire(1);// 如果没有令牌,还想执行操作,就抛出异常if(!canop){throw new BusinessException(ErrorCode.TOO_MANY_REQUEST);}}
}
  1. 测试后整合进项目(一行代码解决)
 //限流判断,每个用户一个限流器
redisLimiterManager.doRateLimit("genChartByAi_" + loginUser.getId());

这篇关于智能BI(后端)-- 系统优化(安全性,数据存储,限流)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/973588

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

关于MongoDB图片URL存储异常问题以及解决

《关于MongoDB图片URL存储异常问题以及解决》:本文主要介绍关于MongoDB图片URL存储异常问题以及解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录MongoDB图片URL存储异常问题项目场景问题描述原因分析解决方案预防措施js总结MongoDB图