如何使用 Python 读取 Excel 数据

2025-04-26 05:50

本文主要是介绍如何使用 Python 读取 Excel 数据,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操...

使用 Python 读取 Excel 数据的详细教程

Python 提供了多种读取 Excel 文件的方式,最常用的库是 pandasopenpyxl。下面我将详细介绍如何使用这两个库来读取 Excphpel 文件,并包含一些实用示例,帮助你撰写博客。

1. 安装必要的依赖

首先,需要确保安装了 pandasopenpyxl 库,这两个库可以帮助我们轻松读取 Excel 文件。

你可以使用以下命令安装它们:

pip install pandas openpyxl
  • pandas:用于数据处理和分析,它内置了读取 Excel 文件的功能。
  • openpyxl:一个读写 Excel 2007 及以上版本的 Excel 文件的库。

2. 读取 Excel 文件

假设你有一个 Excel 文件 data.xlsx,包含如下数据:

NameAgeCity
John25New York
Alice30London
Bob22Tokyo

你可以使用 pandas 来读取文件的内容。

import pandas as pd
# 读取Excel文件
df = pd.read_excel('data.xlsx')
# 显示数据
print(df)

输出

    Name  Age &pythonnbsp;    City
0   John   25  New York
1  Alice   30    http://www.chinasem.cn;London
2    Bob   22     Tokyo

3. 读取特定的工作表

Excel 文件通常包含多个工作表。可以通过指定 sheet_name 来读取特定的工作表。例如,假设 data.xlsx 文件中有一个名为 Sheet2 的工作表:

df = pd.read_excel('data.xlsx', sheet_name='Sheet2')
print(df)

你也可以通过索引来指定工作表:

df = pd.read_excel('data.xlsx', sheet_name=0)  # 读取第一个工作表

4. 读取多张工作表

如果你想一次性读取 Excel 文件中的所有工作表,可以使用 sheet_namChina编程e=None,它会返回一个包含多个 DataFrame 的字典。

dfs = pd.read_excel('data.xlsx', sheet_name=None)
# 遍历所有工作表
for sheet, data in dfs.items():
    print(f"工作表名: {sheet}")
    print(data)

5. 只读取特定列

有时,你只需要读取 Excel 文件中的部分列。可以通过 usecols 参数指定需要读取的列。

df = pd.read_excel('data.xlsx', usecols=['Name', 'City'])
print(df)

输出

    Name      City
0   John  New York
1  Alice    London
2    Bob     Tokyo

你也可以使用列的索引来读取特定列,例如:

df = pd.read_excel('data.xlsx', usecols=[0, 2])  # 读取第一和第三列
print(df)

6. 处理缺失数据

在读取 Excel 数据时,可能会遇到空白单元格。你可以使用 pandas 处理这些缺失数据。例如,可以通过 na_values 参数将特定的值识别为 NaN,或者使用 fillna() 方法填充缺失值。

# 将特定值识别为NaN
df = pd.read_excel('data.xlsx', na_values=['N/A', 'NA'])
# 填充缺失数据
df.fillna(value={'Age': 0, 'City': 'Unknown'}, inplace=True)
print(df)

7. 将 Excel 数据转换为其他格式

有时你可能需要将读取的 Excel 数据保存为其他格式,例如 CSV 文件或 jsON 文件。pandas 允许你轻松实现这一点。

# 保存为CSV文件
df.to_csv('data.csv', index=False)
# 保存为JSON文件
df.to_json('data.json', orient='records')

8. 读取大文件和优化性能

如果 Excel 文件非常大,可能会导致内存不足或读取速度较慢。pandas 提供了一些方法来优化性能,例如使用 chunksize 分块读取数据。

# 分块读取Excel文件,每次读取100行
chunks = pd.read_excel('large_data.xlsx', chunksize=100)
for chunk in chunks:
    print(chunk)

9. 使用 openpyxl 读取 Excel

openpyxl 更适合需要对 Excel 文件进行更底层操作的场景,如读取和修改单元格样式、公式等。以下是一个简单的读取示例:

from openpyxl import load_workbook
# 加载Excel工作簿
wb = load_workbook('data.xlsx')
# 选择工作表
sheet = wb['Sheet1']
# 读取指定单元格的值
for row in sheet.iter_rows(min_row=1, max_row=sheet.max_row, values_only=True):
    print(row)

10. 更多的 Excel 读取功能

你可以使用 pandas 提供的更多选项,例如:

  • skiprows: 跳过特定行数
  • nrows: 读取指定行数
  • header: 设置自定义标题行
# 跳过前两行并读取5行数据
df = pd.read_excel('data.xlsx', skiprows=2, nrows=5)
print(df)

总结

通过 pandasopenpyxl,你可以轻松读取 Excel 文件,并进行各种数据处理操作。pandas 更适合快速、简单的数据分析,而 openpyxl 则适合需要对 Excel 文件进行更深入控制的场景。

到此这篇关于使用 Python 读取 Excel 数据的详细教程的文章就介绍到这了,更多相关 Python 读取 Excel 数据内容请搜索编程China编程(wwwandroid.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于如何使用 Python 读取 Excel 数据的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154382

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。