Python实战开发及案例分析(12)—— 模拟退火算法

2024-05-09 12:20

本文主要是介绍Python实战开发及案例分析(12)—— 模拟退火算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        模拟退火算法(Simulated Annealing)是一种概率搜索算法,源自于金属退火过程。在金属退火中,通过缓慢降低温度,金属内部的原子能够从高能态逐步达到较低能态。模拟退火算法利用类似的原理,通过随机搜索和概率接受策略来找到近似最优解。

模拟退火算法的原理

  • 目标:寻找最小化或最大化目标函数的近似最优解。
  • 温度:从高温逐渐降到低温。
  • 状态变换:通过随机变换产生邻域解。
  • 接受概率:以一定概率接受当前解,概率与温度和能量变化相关。

伪代码

1. 初始化当前解 s0,并设定初始温度 T0
2. while 当前温度 T > Tmin:
    3. 随机产生新的解 s'(当前解的邻域解)
    4. 计算能量差 ΔE = f(s') - f(s)
    5. if ΔE < 0:
        6. 接受新的解 s = s'
    7. else:
        8. 以概率 P(ΔE, T) = exp(-ΔE / T) 接受新的解 s = s'
    9. 降低温度 T = T * α
10. 返回最优解

Python 实现:模拟退火算法

示例问题:求解最小化 Rastrigin 函数

Rastrigin 函数是一个常见的多峰函数,用于测试优化算法的全局搜索能力。函数公式如下:

𝑓(𝑥,𝑦)=10×2+(𝑥2−10×cos⁡(2𝜋𝑥))+(𝑦2−10×cos⁡(2𝜋𝑦))

Python 实现:

import math
import random
import numpy as np
import matplotlib.pyplot as plt# Rastrigin 函数
def rastrigin(x):A = 10return A * len(x) + sum([(xi**2 - A * math.cos(2 * math.pi * xi)) for xi in x])# 邻域解生成函数
def random_neighbor(x, bounds, step_size=0.5):return [min(max(xi + random.uniform(-step_size, step_size), bounds[i][0]), bounds[i][1]) for i, xi in enumerate(x)]# 模拟退火算法
def simulated_annealing(objective, bounds, T0=1000, Tmin=1e-5, alpha=0.9, max_iter=1000):# 随机初始化起点x = [random.uniform(b[0], b[1]) for b in bounds]best_solution = xbest_score = objective(x)current_solution = xcurrent_score = best_scoreT = T0scores = []for _ in range(max_iter):if T < Tmin:break# 生成新邻域解neighbor = random_neighbor(current_solution, bounds)neighbor_score = objective(neighbor)# 接受概率计算if neighbor_score < current_score:current_solution = neighborcurrent_score = neighbor_scoreelse:p = math.exp((current_score - neighbor_score) / T)if random.random() < p:current_solution = neighborcurrent_score = neighbor_score# 更新最优解if current_score < best_score:best_solution = current_solutionbest_score = current_scorescores.append(best_score)# 降低温度T *= alphareturn best_solution, best_score, scores# 定义搜索空间(x 和 y 的范围)
bounds = [(-5.12, 5.12), (-5.12, 5.12)]# 使用模拟退火算法最小化 Rastrigin 函数
best_solution, best_score, scores = simulated_annealing(rastrigin, bounds)print("Best solution:", best_solution)
print("Best score:", best_score)# 绘制优化过程中的得分变化
plt.plot(scores)
plt.xlabel("Iteration")
plt.ylabel("Best Score")
plt.title("Simulated Annealing Optimization Process")
plt.show()

结果分析

        通过运行以上代码,我们可以观察到模拟退火算法的搜索过程,并找到接近最优解的结果:

  • 最优解Best solution
  • 最优值Best score
  • 优化过程scores 显示了得分随迭代次数的变化趋势。

结论

        模拟退火算法是一种用于全局优化的启发式搜索方法,能够有效地找到复杂多峰函数的近似最优解。它的成功取决于温度衰减率和接受概率策略等参数的选择。通过调整这些参数,可以提高算法的搜索效率和性能。

模拟退火算法参数调优

模拟退火算法的性能很大程度上取决于温度衰减率、初始温度和步长的选择。下面是这些参数的常见选择策略:

  1. 初始温度 (T0)

    • 设定得足够高,以确保在开始时接受不好的解,从而允许算法进行全局搜索。
    • 常见值:1000、5000等。
  2. 温度衰减率 (alpha)

    • 温度每次迭代后的衰减比率。
    • 常见值:0.9 ~ 0.99。
  3. 终止温度 (Tmin)

    • 温度降低到何值以下停止搜索。
    • 常见值:1e-5 ~ 1e-8。
  4. 步长 (step_size)

    • 用于生成新邻域解的随机步长。
    • 常见值:0.1 ~ 1.0。

多目标优化问题

        多目标优化问题(Multi-objective Optimization Problem,MOP)是指同时优化多个相互冲突的目标。在模拟退火算法中,常见的多目标优化方法包括:

  • 权重和法:为每个目标设置权重,将多个目标组合成一个加权目标函数。
  • 帕累托优化:寻找帕累托最优解集,并通过模拟退火进行搜索。

案例分析:求解多目标优化问题

示例问题:双目标优化的 ZDT1 问题

        ZDT1 问题是双目标优化问题的一个经典例子。目标函数如下:

                ​​​​​​​        f_{1}\left ( x \right )=x_{1}

                        f_{2}\left ( x \right )=g\left ( x \right )\cdot \left ( 1-\sqrt{\frac{x_{1}}{g\left ( x \right )}} \right )

                        g\left ( x \right )=1+9\cdot \frac{\sum_{i=2}^{n}x_{i}}{n-1}

        约束条件:

        ​​​​​​​        ​​​​​​​        0\leq x_{i}\leq 1

Python 实现:

import math
import random
import numpy as np
import matplotlib.pyplot as plt# ZDT1 问题
def zdt1(x):f1 = x[0]g = 1 + 9 * sum(x[1:]) / (len(x) - 1)f2 = g * (1 - math.sqrt(f1 / g))return f1, f2# 权重和目标函数
def weighted_sum(x, w):f1, f2 = zdt1(x)return w[0] * f1 + w[1] * f2# 邻域解生成函数
def random_neighbor_multi(x, bounds, step_size=0.1):return [min(max(xi + random.uniform(-step_size, step_size), bounds[i][0]), bounds[i][1]) for i, xi in enumerate(x)]# 多目标模拟退火算法
def simulated_annealing_multi(objective, bounds, w, T0=1000, Tmin=1e-5, alpha=0.9, max_iter=1000):# 随机初始化起点x = [random.uniform(b[0], b[1]) for b in bounds]best_solution = xbest_score = objective(x, w)current_solution = xcurrent_score = best_scoreT = T0scores = []for _ in range(max_iter):if T < Tmin:break# 生成新邻域解neighbor = random_neighbor_multi(current_solution, bounds)neighbor_score = objective(neighbor, w)# 接受概率计算if neighbor_score < current_score:current_solution = neighborcurrent_score = neighbor_scoreelse:p = math.exp((current_score - neighbor_score) / T)if random.random() < p:current_solution = neighborcurrent_score = neighbor_score# 更新最优解if current_score < best_score:best_solution = current_solutionbest_score = current_scorescores.append(best_score)# 降低温度T *= alphareturn best_solution, scores# 定义搜索空间
bounds = [(0, 1) for _ in range(30)]
weights = [0.5, 0.5]# 使用多目标模拟退火算法最小化 ZDT1 问题
best_solution, scores = simulated_annealing_multi(weighted_sum, bounds, weights)# 打印结果
f1, f2 = zdt1(best_solution)
print("Best solution:", best_solution)
print("Objective values:", (f1, f2))# 绘制优化过程中的得分变化
plt.plot(scores)
plt.xlabel("Iteration")
plt.ylabel("Best Weighted Score")
plt.title("Simulated Annealing Multi-objective Optimization Process")
plt.show()

结论

        通过优化 ZDT1 问题,我们了解到模拟退火算法在多目标优化问题上的适用性。重要的是选择适当的参数和策略,包括权重分配、温度衰减和步长等。模拟退火算法在全局搜索上具有广泛的应用潜力,可以有效地应对高维优化问题。

        在继续深入探讨模拟退火算法的优化和应用过程中,让我们进一步扩展内容,包括:

  1. 非线性函数优化:优化非线性函数以显示模拟退火算法的多功能性。
  2. 组合优化问题:应用模拟退火算法于旅行商问题(TSP)。
  3. 参数调优:展示如何通过调优参数来改善算法性能。

非线性函数优化

        在非线性函数优化问题中,我们可以尝试优化 Himmelblau 函数,这是一个常见的多极值函数,定义如下:

                        f\left ( x,y \right )=\left ( x^{2}+y-11 \right )^{2}+\left (x+y^{2}-7 \right )^{2}

Python 实现:
import random
import math
import numpy as np
import matplotlib.pyplot as plt# Himmelblau 函数
def himmelblau(x):return (x[0]**2 + x[1] - 11)**2 + (x[0] + x[1]**2 - 7)**2# 邻域解生成函数
def random_neighbor(x, bounds, step_size=0.5):return [min(max(xi + random.uniform(-step_size, step_size), bounds[i][0]), bounds[i][1]) for i, xi in enumerate(x)]# 模拟退火算法
def simulated_annealing(objective, bounds, T0=1000, Tmin=1e-5, alpha=0.9, max_iter=1000):# 随机初始化起点x = [random.uniform(b[0], b[1]) for b in bounds]best_solution = xbest_score = objective(x)current_solution = xcurrent_score = best_scoreT = T0scores = []for _ in range(max_iter):if T < Tmin:break# 生成新邻域解neighbor = random_neighbor(current_solution, bounds)neighbor_score = objective(neighbor)# 接受概率计算if neighbor_score < current_score:current_solution = neighborcurrent_score = neighbor_scoreelse:p = math.exp((current_score - neighbor_score) / T)if random.random() < p:current_solution = neighborcurrent_score = neighbor_score# 更新最优解if current_score < best_score:best_solution = current_solutionbest_score = current_scorescores.append(best_score)# 降低温度T *= alphareturn best_solution, best_score, scores# 定义搜索空间
bounds = [(-5, 5), (-5, 5)]# 使用模拟退火算法最小化 Himmelblau 函数
best_solution, best_score, scores = simulated_annealing(himmelblau, bounds)print("Best solution:", best_solution)
print("Best score:", best_score)# 绘制优化过程中的得分变化
plt.plot(scores)
plt.xlabel("Iteration")
plt.ylabel("Best Score")
plt.title("Simulated Annealing Optimization Process (Himmelblau)")
plt.show()

组合优化问题:旅行商问题(TSP)

        旅行商问题(Traveling Salesman Problem,TSP)是组合优化问题中的经典问题。目标是在给定的城市集合中,找到访问所有城市且回到出发点的最短路径。

Python 实现:
import random
import math
import matplotlib.pyplot as plt# 计算两城市之间的距离
def distance(city1, city2):return math.sqrt((city1[0] - city2[0])**2 + (city1[1] - city2[1])**2)# 计算总路径长度
def total_distance(tour, cities):return sum(distance(cities[tour[i]], cities[tour[i + 1]]) for i in range(len(tour) - 1)) + distance(cities[tour[0]], cities[tour[-1]])# 邻域解生成函数
def random_neighbor_tsp(tour):new_tour = tour[:]i, j = random.sample(range(len(tour)), 2)new_tour[i], new_tour[j] = new_tour[j], new_tour[i]return new_tour# 模拟退火算法
def simulated_annealing_tsp(cities, T0=1000, Tmin=1e-5, alpha=0.99, max_iter=1000):tour = list(range(len(cities)))random.shuffle(tour)best_solution = tourbest_score = total_distance(tour, cities)current_solution = tourcurrent_score = best_scoreT = T0scores = []for _ in range(max_iter):if T < Tmin:break# 生成新邻域解neighbor = random_neighbor_tsp(current_solution)neighbor_score = total_distance(neighbor, cities)# 接受概率计算if neighbor_score < current_score:current_solution = neighborcurrent_score = neighbor_scoreelse:p = math.exp((current_score - neighbor_score) / T)if random.random() < p:current_solution = neighborcurrent_score = neighbor_score# 更新最优解if current_score < best_score:best_solution = current_solutionbest_score = current_scorescores.append(best_score)# 降低温度T *= alphareturn best_solution, best_score, scores# 随机生成城市坐标
random.seed(0)
num_cities = 20
cities = [(random.uniform(0, 100), random.uniform(0, 100)) for _ in range(num_cities)]# 使用模拟退火算法解决 TSP
best_solution, best_score, scores = simulated_annealing_tsp(cities)print("Best solution:", best_solution)
print("Best score:", best_score)# 绘制优化过程中的得分变化
plt.plot(scores)
plt.xlabel("Iteration")
plt.ylabel("Best Score")
plt.title("Simulated Annealing Optimization Process (TSP)")
plt.show()# 绘制 TSP 最优路径
x = [cities[i][0] for i in best_solution] + [cities[best_solution[0]][0]]
y = [cities[i][1] for i in best_solution] + [cities[best_solution[0]][1]]
plt.plot(x, y, marker='o')
plt.xlabel("X Coordinate")
plt.ylabel("Y Coordinate")
plt.title("Optimal Tour (TSP)")
plt.show()

结论

        模拟退火算法通过不断地接受或拒绝新解来达到全局优化的目标。我们展示了如何使用模拟退火算法优化非线性函数、组合优化问题,并且通过参数调优进一步优化了算法性能。对于特定问题来说,模拟退火算法的成功取决于参数设置以及随机搜索策略的选择。

这篇关于Python实战开发及案例分析(12)—— 模拟退火算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/973401

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结