大语言模型入门介绍(附赠书)

2024-05-09 03:52

本文主要是介绍大语言模型入门介绍(附赠书),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自2022年底ChatGPT的震撼上线以来,大语言模型技术迅速在学术界和工业界引起了广泛关注,标志着人工智能技术的又一次重要跃进。作为当前人工智能领域的前沿技术之一,代表了机器学习模型在规模和复杂性上的显著进步。它们通常由深度神经网络构成,拥有大量参数(数十亿到数千亿)的机器学习模型,这些模型的设计和训练过程非常复杂,需要处理和学习海量数据,以期达到高级的认知和预测能力。大模型在自然语言处理(NLP)、计算机视觉(CV)、语音识别和推荐系统等多个领域都有广泛的应用。

大语言模型的构建过程涉及多个关键步骤,旨在使模型能够理解和生成类似于人类的语言。构建大语言模型的一般流程如下:

  1. 设计架构:

    • 大语言模型通常基于Transformer架构,这是一种专门为处理序列数据而设计的注意力机制模型。Transformer能够有效捕捉词与词之间的关系,无论它们在句子中的距离有多远。
  2. 预训练任务的选择:

    • 预训练是构建大语言模型的关键步骤,涉及让模型在大量文本上学习语言的通用规律。常见的预训练任务包括掩码语言建模(Masked Language Modeling, MLM)和下一句预测(Next Sentence Prediction, NSP)。
  3. 数据收集与处理:

    • 需要大量的文本数据来训练大语言模型,这些数据可能来自书籍、文章、对话等。数据需要经过清洗,去除噪声和不相关信息,同时进行分词处理,将文本转换为模型可以理解的格式。
  4. 模型训练:

    • 使用预训练数据,通过迭代优化算法调整模型的参数。训练过程中,模型学习预测掩码部分的词(MLM任务),或判断两个句子是否连续(NSP任务)。这个过程需要大量的计算资源。
  5. 微调(Fine-tuning):

    • 预训练完成后,大语言模型通常在特定任务上进行微调。这涉及在小规模的、有标签的数据集上进一步训练模型,使其更适应特定的应用场景。
  6. 评估与测试:

    • 在模型训练和微调的每个阶段,都需要对模型的性能进行评估。这通常通过在独立的测试集上进行,以确保模型的泛化能力。
  7. 部署与应用:

    • 经过充分的训练和测试,大语言模型可以部署到实际应用中,如聊天机器人、文本生成、语言翻译、内容推荐等。
  8. 持续迭代:

    • 即使在部署后,大语言模型的构建过程也不是一成不变的。随着时间的推移,可能需要根据新的数据和反馈对模型进行更新和优化。

构建大语言模型是一个复杂的过程,涉及先进的机器学习技术、大量的数据和计算资源,以及对模型性能和伦理问题的深思熟虑。大模型的核心技术主要围绕以下几个关键领域:

  1. 深度学习框架:大模型依赖于先进的深度学习框架,如Tensorflow和PyTorch,这些框架提供了必要的工具和库来构建、训练和部署复杂的神经网络模型。

  2. Transformer架构:这种架构通过自注意力机制,允许模型在处理序列数据时更有效地捕捉长距离依赖关系,极大地提升了模型的序列建模能力。

  3. 预训练和微调:大模型通常在大规模的数据集上进行预训练,学习通用的特征和模式,然后针对特定任务进行微调,以适应不同的应用场景。

  4. 多模态学习:一些大模型能够处理并整合来自不同模态(如文本、图像、声音)的信息,这要求模型具备跨模态的理解和生成能力。

  5. 自编码器和自回归模型:自编码器模型如BERT专注于理解语言,而自回归模型如GPT专注于生成文本。每种模型都有其特定的应用场景。

  6. 编码器-解码器架构:某些大模型采用编码器-解码器架构,适合于需要将一种类型的输入序列转换为另一种类型的输出序列的任务。

  7. 优化算法:为了有效训练具有数亿甚至数万亿参数的大模型,需要高效的优化算法,如随机梯度下降(SGD)及其变种。

  8. 硬件加速:大模型的训练和推理需要强大的计算资源,包括GPU、TPU等专用硬件加速器。

  9. 数据并行和分布式训练:为了处理海量数据和复杂模型,大模型的训练常常采用数据并行和模型并行技术,以及分布式训练策略。

  10. 模型压缩和加速:研究如何减少模型的大小和计算需求,使其能够在资源受限的设备上运行,包括量化、剪枝和知识蒸馏等技术。

  11. 模型可解释性:提高模型的透明度和可解释性,帮助用户理解模型的决策过程。

  12. 安全性和隐私保护:确保大模型的训练和应用过程中的数据安全和隐私保护。

关于大语言模型最新最全的介绍可以从近期赵鑫 李军毅 周昆 唐天一 文继荣《大语言模型》中了解,本书旨在深入探讨大语言模型的核心技术、发展历程以及其在现代社会中的广泛应用。从大语言模型的构建过程入手,详细阐述了自统计语言模型以来的多个发展阶段,并特别强调了OpenAI在这一领域的贡献,尤其是GPT系列模型的创新和影响。 在本书中,不仅回顾了大语言模型的早期探索,还深入分析了模型架构的可拓展性、数据质量与规模的重要性,以及这些因素如何共同塑造了大模型的性能。

可收藏+关注后私信小助理获得本书电子版

这篇关于大语言模型入门介绍(附赠书)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/972318

相关文章

MybatisPlus service接口功能介绍

《MybatisPlusservice接口功能介绍》:本文主要介绍MybatisPlusservice接口功能介绍,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录Service接口基本用法进阶用法总结:Lambda方法Service接口基本用法MyBATisP

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Go语言如何判断两张图片的相似度

《Go语言如何判断两张图片的相似度》这篇文章主要为大家详细介绍了Go语言如何中实现判断两张图片的相似度的两种方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 在介绍技术细节前,我们先来看看图片对比在哪些场景下可以用得到:图片去重:自动删除重复图片,为存储空间"瘦身"。想象你是一个

Go语言中Recover机制的使用

《Go语言中Recover机制的使用》Go语言的recover机制通过defer函数捕获panic,实现异常恢复与程序稳定性,具有一定的参考价值,感兴趣的可以了解一下... 目录引言Recover 的基本概念基本代码示例简单的 Recover 示例嵌套函数中的 Recover项目场景中的应用Web 服务器中

MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)

《MySQL复杂SQL之多表联查/子查询详细介绍(最新整理)》掌握多表联查(INNERJOIN,LEFTJOIN,RIGHTJOIN,FULLJOIN)和子查询(标量、列、行、表子查询、相关/非相关、... 目录第一部分:多表联查 (JOIN Operations)1. 连接的类型 (JOIN Types)

java中BigDecimal里面的subtract函数介绍及实现方法

《java中BigDecimal里面的subtract函数介绍及实现方法》在Java中实现减法操作需要根据数据类型选择不同方法,主要分为数值型减法和字符串减法两种场景,本文给大家介绍java中BigD... 目录Java中BigDecimal里面的subtract函数的意思?一、数值型减法(高精度计算)1.

Pytorch介绍与安装过程

《Pytorch介绍与安装过程》PyTorch因其直观的设计、卓越的灵活性以及强大的动态计算图功能,迅速在学术界和工业界获得了广泛认可,成为当前深度学习研究和开发的主流工具之一,本文给大家介绍Pyto... 目录1、Pytorch介绍1.1、核心理念1.2、核心组件与功能1.3、适用场景与优势总结1.4、优

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe