斐波那契数列及青蛙跳台阶问题

2024-05-08 09:38

本文主要是介绍斐波那契数列及青蛙跳台阶问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目1:

写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项。

斐波那契(Fibonacci)数列定义如下:

f(n)=0,1,f(n1)+f(n2),n=0n=1n>2

效率很低的解法:

  1. 递归解法(效率很低)
long long Fibonacci_Solution1(unsigned int n)
{if(n <= 0)return 0;if(n == 1)return 1;return Fibonacci_Solution1(n - 1) + Fibonacci_Solution1(n - 2);
}

2 循环解法:改进的算法:从下往上计算。首先根据f(0)和f(1)算出f(2),再根据f(1)和f(2)算出f(3)。。。。。依此类推就可以算出第n项了。很容易理解,这种思路的时间复杂度是o(n)。实现代码如下:

long long Fibonacci(unsigned n)
{int result[2] = {0 , 1};if(n < 2)return result[n];long long fibMinusOne = 1;long long fibMinusTwo = 0;for(unsigned int i = 2 ; i <= n ; ++i){fibN = fibMinusOne + fibMinusTwo;fibMinusTwo = fibMinusOne;fibMinusOne = fibN;}return fibN;
}

题目2:

 一只青蛙一次可以跳上1级台阶,也可以跳上2级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

可以把n级台阶时的跳法看成是n的函数,记为f(n)。当n>2时,第一次跳的时候就有两种不同的选择:一是第一次只跳1级,此时跳法数目等于后面剩下的n-1级台阶的跳法数目,即为f(n-1);另一种选择是第一次跳2级,此时跳法数目等于后面剩下n-2级台阶的跳法数目,即为f(n-2)。因此,n级台阶的不同跳法的总数f(n)=f(n-1)+f(n-2)。分析到这里,不难看出这实际上就是斐波那契数列了。

与斐波那契数列不同的是,其初始值定义稍有不同,
当n=1时,只能跳一级台阶,一种跳法
当n=2时,一次跳一级或两级,两种跳法
所以,关于青蛙跳台阶的定义如下:

f(n)=1,2,f(n1)+f(n2),n=1n=2n>2

  1. 非递归写法
long long FrogJump12Step(int n)
{if (n <= 0){std::cerr << "param error" << std::endl;return -1;}if (n == 1)return 1;if (n == 2)return 2;int frogNMinusOne = 2;//f(n-1)=2int frogNMinusTwo = 1;//f(n-2)=1int frogN = 0;for (unsigned int i = 3; i <= n;++i){frogN = frogNMinusOne + frogNMinusTwo;frogNMinusTwo = frogNMinusOne;frogNMinusOne = frogN;}return frogN;
}
  1. 递归解法
long long FrogJump12StepRecursive(int n)
{if (n <= 0){std::cerr << "param error" << std::endl;return -1;}if (n == 1)return 1;if (n == 2)return 2;return FrogJump12StepRecursive(n - 1) + FrogJump12StepRecursive(n - 2);
}

题目3:

  一只青蛙一次可以跳上1级台阶,也可以跳上2级。。。。。它也可以跳上n级,此时该青蛙跳上一个n级的台阶总共有多少种跳法?

用数学归纳法可以证明: f(n)=2n1 .

递归式证明:
当n = 1 时, 只有一种跳法,即1阶跳:Fib(1) = 1;
当n = 2 时, 有两种跳的方式,一阶跳和二阶跳:Fib(2) = Fib(1) + Fib(0) = 2;
当n = 3 时,有三种跳的方式,第一次跳出一阶后,后面还有Fib(3-1)中跳法; 第一次跳出二阶后,后面还有Fib(3-2)中跳法;第一次跳出三阶后,后面还有Fib(3-3)中跳法
Fib(3) = Fib(2) + Fib(1)+Fib(0)=4;
当n = n 时,共有n种跳的方式,第一次跳出一阶后,后面还有Fib(n-1)中跳法; 第一次跳出二阶后,后面还有Fib(n-2)中跳法……………………..第一次跳出n阶后, 后面还有 Fib(n-n)中跳法.
Fib(n) = Fib(n-1)+Fib(n-2)+Fib(n-3)+……….+Fib(n-n)=Fib(0)+Fib(1)+Fib(2)+…….+Fib(n-1)
又因为Fib(n-1)=Fib(0)+Fib(1)+Fib(2)+…….+Fib(n-2)
两式相减得:Fib(n)-Fib(n-1)=Fib(n-1)
=====》 Fib(n) = 2*Fib(n-1) n >= 2
递归等式如下:

f(n)=1,2,2f(n1),n=1n=2n>2

所以: f(n)=2f(n1)=22(n2)....=2n1f(0)=2n1

  1. 非递归解法:
long long FrogJump12nStep(int n)
{if (n <= 0){std::cerr << "param error" << std::endl;return -1;}else if (n == 1)return 1;else{long long  fn1 = 1;long long fn = 0;for (int i = 2; i <= n;++i){fn = 2 * fn1;fn1 = fn;}return fn;}
}
  1. 递归解法
long long FrogJump12nStepRecursive(int n)
{if (n <= 0){std::cerr << "param error" << std::endl;return -1;}else if (n == 1)return 1;else if (n == 2)return 2;elsereturn 2 * FrogJump12nStepRecursive(n - 1);
}

题目4:

小矩形覆盖大矩形,用2*1的小矩形横着或竖着去覆盖各大矩形。

思路:设题解为f(n),

第一步:若第一块矩形竖着放,后边还有n-1个2*1矩形,即此种情况下,有f(n-1)种覆盖方法。
第二部:若第一块横着放,后边还有n-2个2*1矩形,此种情况下,有f(n-2)种覆盖方法。
第三部:可得 f(n)=f(n-1)+f(n-2)

可知,此题可以转化为其斐波那契数列第n项的值。

这篇关于斐波那契数列及青蛙跳台阶问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/969977

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题

《解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘问题》:本文主要介绍解决未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4... 目录未解析的依赖项:‘net.sf.json-lib:json-lib:jar:2.4‘打开pom.XM

IDEA Maven提示:未解析的依赖项的问题及解决

《IDEAMaven提示:未解析的依赖项的问题及解决》:本文主要介绍IDEAMaven提示:未解析的依赖项的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录IDEA Maven提示:未解析的依编程赖项例如总结IDEA Maven提示:未解析的依赖项例如

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

SpringBoot+Redis防止接口重复提交问题

《SpringBoot+Redis防止接口重复提交问题》:本文主要介绍SpringBoot+Redis防止接口重复提交问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录前言实现思路代码示例测试总结前言在项目的使用使用过程中,经常会出现某些操作在短时间内频繁提交。例