####好好好¥#####spark Streaming 技术内幕 : 从DSteam到RDD全过程解析

本文主要是介绍####好好好¥#####spark Streaming 技术内幕 : 从DSteam到RDD全过程解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、DStream和RDD的关系
    DSream 代表了一系列连续的RDD,DStream中每个RDD包含特定时间间隔的数据,如下图所示:
 
    
从上图可以看出, 一个DStream 对应了时间维度上的多个RDD。
DStream 作为Spark Stream的一个基本抽象,提供了高层的API来进行Spark Streaming 程序开发,先看一个简单的Spark Streaming的WordCount程序实例:
  1. object WordCount{
  2. def main(args:Array[String]):Unit={
  3. val sparkConf =newSparkConf().setMaster("local[4]").setAppName("WordCount")
  4. val ssc =newStreamingContext(sparkConf,Seconds(1))
  5. val lines = ssc.socketTextStream("localhost",9999)
  6. val words = lines.flatMap(_.split(" "))
  7. val wordCounts = words.map(=>(x,1)).reduceByKey(_+_)
  8. wordCounts.print()
  9. ssc.start()
  10. ssc.awaitTermination()
  11. }
  12. }
我们会发现对DStream的操作和RDD的操作惊人的相似, 通过对DStream的不断转换,形成依赖关系。所以的DStream操作最终会转换成底层的RDD的操作,上面的例子中
lines DStream转换成wods DSteam。 lines DStream的 flatMap操作会作用于其中每一个RDD去生成words DStream 中的RDD, 过程如下图所示:
 
下面从源码角度看一下 DStream和RDD的关系:
    DStream 中 有一个HashMap[Time,RDD[T]]类型的对象 generatedRDDs,其中Key为作业开始时间,RDD为该DStream对应的RDD,源码如下:
 
    
二、Dstream 的分类
    Dstream 主要分为三大类:
         1. Input DStream
         2.  Transformed DStream
         3. Output DStream
 
2.1 InputDStream 是DStream 最初诞生的地方,也是RDD最初诞生的地方,它是依据数据源创建的最初的DStream,如上面例子中的代码:
 
val lines = ssc . socketTextStream ( "localhost" , 9999 )
 
基于Socket数据源创建了 SocketInputDStream对象lines,下面从源码角度分析一下他是怎么生成RDD的,  SocketInputDStream生成RDD的方法在 它的父类ReceiverInputDSteam中:
 

 
ReceiverInputDSteam  的compute方法中调用了createBloackRDD方法基于Block信息创建了RDD :
 

可以看到  ReceiverInputDSteam 的 createBloackRDD 方法new了BlockRDD对象,BlockRDD 是继承自RDD。至此,最初的RDD创建完成。
 
2.2、  Transformed DStream 是由其他DStream 通过非Output算子装换而来的DStream
   例如例子中的lines通过flatMap算子转换生成了FlatMappedDStream:
     val words = lines.flatMap(_.split(" "))
   下面看一下flatMap的源码:
    
    
 
可以看到flatMap是DStream的方法,它创建了FlatMappeedDStream并返回,上面例子中words 就是 FlatMappeedDStream 对象,创建 FlatMappeedDStream对象时传入了 参数flatMapFunc,这里的flatMapFunc就是用户编写的业务逻辑,我们再进入FlatMappedDStream,查看其compute方法:
 

可以惊喜的看到 FlatMappedDStream的compute方法调用了parent的getOrCompute方法获取父DStream的RDD.通过对 父DStream的RDD的flatMap算子生成新的RDD,转换的业务逻辑通过flatMapFunc参数传递给flatMap算子。这样对DStream的操作都转换成了对RDD的操作,同时DSream的依赖关系也与RDD之间依赖关系同时建立了起来。
说明:这些RDD的创建是在Job动态生成时候发生的,Job生成最终会调用ForeachDStream的generateJob方法,源码如下
 

其中的parent.getOrCompute方法会依据DStream之间的依赖关系,导致一系列的链式调用,从而创建所有的RDD,并形成RDD之间的依赖关系。
 
3.3  Output DStream 是有其他DStream通过Output算子生成,它只存在于Output算子内部,并不会像Transformed Stream一样由算子返回, 他是触发Job执行的关键。
          那么什么是Output 算子呢? Output 算子是让DStream中的数据被推送的外部系统,像数据库,文件系统(HDFS,GFS等)的算子。因为Output 算子是将转换后的数据推送到外部系统被使用的操作,所以他触发了前面转换操作的真正执行(类似于RDD的action操作)。
          下面,我们看看有哪些Output算子:
 
Output Operation Meaning
print() Prints the first ten elements of every batch of data in a DStream on the driver node running the streaming application. This is useful for development and debugging. 
Python API This is called pprint() in the Python API.
saveAsTextFiles(prefix, [suffix]) Save this DStream's contents as text files. The file name at each batch interval is generated based onprefix and suffix"prefix-TIME_IN_MS[.suffix]".
saveAsObjectFiles(prefix, [suffix]) Save this DStream's contents as SequenceFiles of serialized Java objects. The file name at each batch interval is generated based on prefix and suffix"prefix-TIME_IN_MS[.suffix]"
Python API This is not available in the Python API.
saveAsHadoopFiles(prefix, [suffix]) Save this DStream's contents as Hadoop files. The file name at each batch interval is generated based on prefix and suffix"prefix-TIME_IN_MS[.suffix]"
Python API This is not available in the Python API.
foreachRDD(func) The most generic output operator that applies a function, func, to each RDD generated from the stream. This function should push the data in each RDD to an external system, such as saving the RDD to files, or writing it over the network to a database. Note that the function func is executed in the driver process running the streaming application, and will usually have RDD actions in it that will force the computation of the streaming RDDs.
下面,回到我们开头的例子:
wordCounts . print ()
其中pirnt算子就是Output算子,我们进入print的源码:
 

print()方法调用了print(10),其实是调用了另一个print方法:
print 方法中首先定义了一个函数foreachFunc,foreachFunc从rdd中出去num个元素打印出来。接下来print函数调用了foreachRDD,并将foreachFunc的处理逻辑作为参数传入。这里的foreachRDD也是一个Output算子(上面已经有说明),接下来看看 foreachRDD的源码。
 

 
可以看到foreachRDD中创建了一个ForeachDStream对象,这就是我们期待已久的Output DStream。这里需要注意一个关键点:
创建完ForeachRDD对象后,调用了该对象的register方法。register方法将当前对象注册给DStreamGraph。源码如下:
 

注册的过程就是将当前对象加入graph的输出流outputStream中:

这个过程很重要,在Job触发时候会用到outputStream。我们先在这里记住这个过程,下面的分析会用到这个内容。
至此,DStream到RDD过程已经解析完毕。
三 、由Dstream触发RDD的执行
    Spark Stream的Job执行过程我在另一篇博客有详细介绍,具体细节请参考 http://www.cnblogs.com/zhouyf/p/5503682.html
在生成Job的过程中会调用DStreamGraph的generate方法:
其中,就调用了outputStream的generateJob方法,这里的outputStream就上面有output算子注册给DStreamGraph的输出流。就是我们实例中ForeachDStream 。
 
ForeachDStream 的generateJob方法源码:
 
可以看到它将我们的业务逻辑封装成jobFunc传递给了最终生成的Job对象。
由上篇博客《 Spark streaming技术内幕 : Job动态生成原理与源码解析 我们知道在StreamContext启动会动态创建job,并且最终调用Job的run方法
Job的run方法由JobScheduler的submitJobSet触发 : 
其中jobExecutor对象是一个线程池,JobHandler实现了 Runnable接口,在JobHandler 的run方法中会调用传入的job对象的run方法。在这里Job的run方法开始在线程中执行,JobHandler的run方法源码如下:
 

其中的job就是封装了我们业务逻辑的Job对象,它的run方法会触发我们在foreachRDD方法中对RDD的操作(一般是action操作),到这里RDD的Action操作被触发,spark作业开始执行。
总结:
    1、在一个固定时间维度上,DStream和RDD是一一对应关系,可以将DStream看成是RDD在时间维度上封装。
    2、Dstream 主要分为三大类: Input DStream,Transformed DStream,Output DStream,其中Output Dstream 对开发者是透明的,存在于Output 算子内部。
    3、Spark Streaming应用程序最终会转化成对RDD操作的spark 程序,spark 程序由于执行了foreachRDD算子中的RDD操作被触发。

这篇关于####好好好¥#####spark Streaming 技术内幕 : 从DSteam到RDD全过程解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/967701

相关文章

Win安装MySQL8全过程

《Win安装MySQL8全过程》:本文主要介绍Win安装MySQL8全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Win安装mysql81、下载MySQL2、解压文件3、新建文件夹data,用于保存数据库数据文件4、在mysql根目录下新建文件my.ini

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Golang HashMap实现原理解析

《GolangHashMap实现原理解析》HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持高效的插入、查找和删除操作,:本文主要介绍GolangH... 目录HashMap是一种基于哈希表实现的键值对存储结构,它通过哈希函数将键映射到数组的索引位置,支持

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

java解析jwt中的payload的用法

《java解析jwt中的payload的用法》:本文主要介绍java解析jwt中的payload的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java解析jwt中的payload1. 使用 jjwt 库步骤 1:添加依赖步骤 2:解析 JWT2. 使用 N

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

Java 正则表达式URL 匹配与源码全解析

《Java正则表达式URL匹配与源码全解析》在Web应用开发中,我们经常需要对URL进行格式验证,今天我们结合Java的Pattern和Matcher类,深入理解正则表达式在实际应用中... 目录1.正则表达式分解:2. 添加域名匹配 (2)3. 添加路径和查询参数匹配 (3) 4. 最终优化版本5.设计思

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析