基于鸢尾花数据集的四种聚类算法(kmeans,层次聚类,DBSCAN,FCM)和学习向量量化对比

本文主要是介绍基于鸢尾花数据集的四种聚类算法(kmeans,层次聚类,DBSCAN,FCM)和学习向量量化对比,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于鸢尾花数据集的四种聚类算法(kmeans,层次聚类,DBSCAN,FCM)和学习向量量化对比

注:下面的代码可能需要做一点参数调整,才得到所有我的运行结果。

kmeans算法:

import matplotlib.pyplot as plt # 导入matplotlib的库
import numpy as np # 导入numpy的包
from sklearn import datasets #导入数据集
from sklearn.decomposition import PCA # PCA主成分分析类
from sklearn.metrics import silhouette_score
from sklearn.metrics import calinski_harabasz_score
from sklearn.metrics import davies_bouldin_score
iris = datasets.load_iris() #加载iris数据集
X = iris.data #加载特征数据
# Y = iris.target #加载标签数据
#绘制数据分布图
y = iris.target
X = iris.data
#X.shape
#调用PCA
pca = PCA(n_components=2) # 降到2维
pca = pca.fit(X) #拟合模型
X_dr = pca.transform(X) #获取新矩阵 (降维后的)
#X_dr#也可以fit_transform一步到位
#X_dr = PCA(2).fit_transform(X)#plt.figure()
#plt.scatter(X_dr[y==0, 0], X_dr[y==0, 1], c="red", label=iris.target_names[0]) 
#plt.scatter(X_dr[y==1, 0], X_dr[y==1, 1], c="black", label=iris.target_names[1])
#plt.scatter(X_dr[y==2, 0], X_dr[y==2, 1], c="orange", label=iris.target_names[2])
#plt.legend()
#plt.title('PCA of IRIS dataset')
#plt.show()print("===K-means聚类===")
from sklearn.cluster import KMeans # 引入KMeans模块estimator = KMeans(n_clusters=3).fit(X)  # 构造聚类器
label_pred = estimator.labels_  # 获取聚类标签# 评估指标列表  
silhouette_avg_scores = []  Calinski_Harabasz_scores = []  
Davies_Bouldin_scores = []  
# 遍历不同的n_clusters值  
for n_clusters in range(2, 11):  kmeans = KMeans(n_clusters=n_clusters)  kmeans.fit(X)  labels = kmeans.labels_  silhouette_avg = silhouette_score(X, kmeans.labels_)  print(silhouette_avg)
# 2. Calinski-Harabasz指数calinski_haraba=calinski_harabasz_score(X, kmeans.labels_)print(calinski_haraba)# 3. DB指数(Davies-Bouldin Index)davies_bouldin=davies_bouldin_score(X, kmeans.labels_)Davies_Bouldin_scores.append(davies_bouldin)Calinski_Harabasz_scores.append(calinski_haraba)silhouette_avg_scores.append(silhouette_avg)  # 绘制图形  
plt.plot(range(2, 11), silhouette_avg_scores, marker='o', label='Silhouette Coefficient')  plt.title('Silhouette Coefficient for Different n_clusters-kmeans')  
plt.xlabel('Number of clusters (n_clusters)')  
plt.ylabel('Silhouette Coefficient')  
plt.legend()
plt.show()plt.plot(range(2, 11), Calinski_Harabasz_scores, marker='o', label=' Calinski-Harabasz')  
plt.title(' Calinski-Harabaszfor Different n_clusters-kmeans')  
plt.xlabel('Number of clusters (n_clusters)')  
plt.ylabel('Calinski Harabasz')  
plt.legend()
plt.show()plt.plot(range(2, 11), Davies_Bouldin_scores, marker='o', label='Davies-Bouldin Index')  
plt.title('Davies-Bouldin Index for Different n_clusters-kmeans')  
plt.xlabel('Number of clusters (n_clusters)')  
plt.ylabel('Davies-Bouldin Index')  
plt.legend()
plt.show()

运行结果如下:
在这里插入图片描述

DBSCAN:

import matplotlib.pyplot as plt # 导入matplotlib的库
import numpy as np # 导入numpy的包
from sklearn import datasets #导入数据集
from sklearn.decomposition import PCA # PCA主成分分析类
from sklearn.metrics import silhouette_score
from sklearn.metrics import calinski_harabasz_score
from sklearn.metrics import davies_bouldin_scorefrom sklearn.cluster import DBSCAN # 引入DBSCAN模块iris = datasets.load_iris() #加载iris数据集
X = iris.data #加载特征数据
# Y = iris.target #加载标签数据
#绘制数据分布图
y = iris.target
X = iris.data
#X.shape
##调用PCA
#pca = PCA(n_components=2) # 降到2维
#pca = pca.fit(X) #拟合模型
#X_dr = pca.transform(X) #获取新矩阵 (降维后的)
##X_dr#也可以fit_transform一步到位
#X_dr = PCA(2).fit_transform(X)#plt.figure()
#plt.scatter(X_dr[y==0, 0], X_dr[y==0, 1], c="red", label=iris.target_names[0]) 
#plt.scatter(X_dr[y==1, 0], X_dr[y==1, 1], c="black", label=iris.target_names[1])
#plt.scatter(X_dr[y==2, 0], X_dr[y==2, 1], c="orange", label=iris.target_names[2])
#plt.legend()
#plt.title('PCA of IRIS dataset')
#plt.show()print("===DBSCAN聚类===")
from sklearn.cluster import KMeans # 引入KMeans模块estimator = KMeans(n_clusters=3).fit(X)  # 构造聚类器
label_pred = estimator.labels_  # 获取聚类标签# 评估指标列表  
silhouette_avg_scores = []  Calinski_Harabasz_scores = []  
Davies_Bouldin_scores = []  
# 遍历不同的n_clusters值  
for n_clusters in range(2, 11):  dbscan = DBSCAN(eps=0.4, min_samples=n_clusters).fit(X) #导入DBSCAN模块进行训练,在一个邻域的半径内min_samples数的邻域eps被认为是一个簇。请记住,初始点包含在min_samples中。label_pred = dbscan.labels_ # labels为每个数据的簇标签,不在任何“高密度”集群中的“noisy”样本返回-1silhouette_avg = silhouette_score(X, dbscan.labels_)  print(silhouette_avg)# 2. Calinski-Harabasz指数calinski_haraba=calinski_harabasz_score(X, dbscan.labels_)print(calinski_haraba)# 3. DB指数(Davies-Bouldin Index)davies_bouldin=davies_bouldin_score(X, dbscan.labels_)Davies_Bouldin_scores.append(davies_bouldin)Calinski_Harabasz_scores.append(calinski_haraba)silhouette_avg_scores.append(silhouette_avg)  # 绘制图形  
plt.plot(range(2, 11), silhouette_avg_scores, marker='o', label='Silhouette Coefficient')  plt.title('Silhouette Coefficient for Different min_samples-DBSCAN-eps=0.4')  
plt.xlabel('Number of min_samples (min_samples)')  
plt.ylabel('Silhouette Coefficient')  
plt.legend()
plt.show()plt.plot(range(2, 11), Calinski_Harabasz_scores, marker='o', label=' Calinski-Harabasz')  
plt.title('Calinski-Harabasz for Different min_samples-DBSCAN-eps=0.4')  
plt.xlabel('Number of min_samples (min_samples)')  
plt.ylabel('Calinski Harabasz')  
plt.legend()
plt.show()plt.plot(range(2, 11), Davies_Bouldin_scores, marker='o', label='Davies-Bouldin Index')  
plt.title('Davies-Bouldin Index for Different min_samples-DBSCAN-eps=0.4')  
plt.xlabel('Number of min_samples (min_samples)')  
plt.ylabel('Davies-Bouldin Index')  
plt.legend()
plt.show()# 评估指标列表  
silhouette_avg_scores = []  Calinski_Harabasz_scores = []  
Davies_Bouldin_scores = []  xindex= [0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.4,1.6]
for s in xindex:  print(s)dbscan = DBSCAN(eps=s, min_samples=3).fit(X) #导入DBSCAN模块进行训练,在一个邻域的半径内min_samples数的邻域eps被认为是一个簇。请记住,初始点包含在min_samples中。label_pred = dbscan.labels_ # labels为每个数据的簇标签,不在任何“高密度”集群中的“noisy”样本返回-1silhouette_avg = silhouette_score(X, dbscan.labels_)  print(silhouette_avg)# 2. Calinski-Harabasz指数calinski_haraba=calinski_harabasz_score(X, dbscan.labels_)print(calinski_haraba)# 3. DB指数(Davies-Bouldin Index)davies_bouldin=davies_bouldin_score(X, dbscan.labels_)Davies_Bouldin_scores.append(davies_bouldin)Calinski_Harabasz_scores.append(calinski_haraba)silhouette_avg_scores.append(silhouette_avg)  # 绘制图形  
plt.plot(xindex, silhouette_avg_scores, marker='o', label='Silhouette Coefficient')  plt.title('Silhouette Coefficient for Different min_samples-DBSCAN- min_samples=3')  
plt.xlabel('eps')  
plt.ylabel('Silhouette Coefficient')  
plt.legend()
plt.show()plt.plot(xindex, Calinski_Harabasz_scores, marker='o', label=' Calinski-Harabasz')  
plt.title('Calinski-Harabasz for Different min_samples-DBSCAN- min_samples=3')  
plt.xlabel('eps')  
plt.ylabel('Calinski Harabasz')  
plt.legend()
plt.show()plt.plot(xindex, Davies_Bouldin_scores, marker='o', label='Davies-Bouldin Index')  
plt.title('Davies-Bouldin Index for Different min_samples-DBSCAN- min_samples=3')  
plt.xlabel('eps')  
plt.ylabel('Davies-Bouldin Index')  
plt.legend()
plt.show()

运行结果:
在这里插入图片描述
在这里插入图片描述层次聚类:

import matplotlib.pyplot as plt # 导入matplotlib的库
import numpy as np # 导入numpy的包
from sklearn import datasets #导入数据集
from sklearn.decomposition import PCA # PCA主成分分析类
from sklearn.metrics import silhouette_score
from sklearn.metrics import calinski_harabasz_score
from sklearn.metrics import davies_bouldin_scorefrom sklearn.cluster import AgglomerativeClustering
iris = datasets.load_iris() #加载iris数据集
X = iris.data #加载特征数据
# Y = iris.target #加载标签数据
#绘制数据分布图
y = iris.target
X = iris.data
#X.shape
#调用PCA
pca = PCA(n_components=2) # 降到2维
pca = pca.fit(X) #拟合模型
X_dr = pca.transform(X) #获取新矩阵 (降维后的)
#X_dr#也可以fit_transform一步到位
#X_dr = PCA(2).fit_transform(X)#plt.figure()
#plt.scatter(X_dr[y==0, 0], X_dr[y==0, 1], c="red", label=iris.target_names[0]) 
#plt.scatter(X_dr[y==1, 0], X_dr[y==1, 1], c="black", label=iris.target_names[1])
#plt.scatter(X_dr[y==2, 0], X_dr[y==2, 1], c="orange", label=iris.target_names[2])
#plt.legend()
#plt.title('PCA of IRIS dataset')
#plt.show()print("===K-means聚类===")
from sklearn.cluster import KMeans # 引入KMeans模块estimator = KMeans(n_clusters=3).fit(X)  # 构造聚类器
label_pred = estimator.labels_  # 获取聚类标签# 评估指标列表  
silhouette_avg_scores = []  Calinski_Harabasz_scores = []  
Davies_Bouldin_scores = []  
# 遍历不同的n_clusters值  
for n_clusters in range(2, 11):  agg = AgglomerativeClustering( n_clusters=n_clusters)agg.fit(X)  labels = agg.labels_  silhouette_avg = silhouette_score(X, agg.labels_)  
# 2. Calinski-Harabasz指数calinski_haraba=calinski_harabasz_score(X, agg.labels_)# 3. DB指数(Davies-Bouldin Index)davies_bouldin=davies_bouldin_score(X, agg.labels_)Davies_Bouldin_scores.append(davies_bouldin)Calinski_Harabasz_scores.append(calinski_haraba)silhouette_avg_scores.append(silhouette_avg)  # 绘制图形  
plt.plot(range(2, 11), silhouette_avg_scores, marker='o', label='Silhouette Coefficient')  plt.title('Silhouette Coefficient for Different n_clusters-AgglomerativeClustering')  
plt.xlabel('Number of clusters (n_clusters)')  
plt.ylabel('Silhouette Coefficient')  
plt.legend()
plt.show()plt.plot(range(2, 11), Calinski_Harabasz_scores, marker='o', label=' Calinski-Harabasz')  
plt.title(' Calinski-Harabaszfor Different n_clusters-AgglomerativeClustering')  
plt.xlabel('Number of clusters (n_clusters)')  
plt.ylabel('Calinski Harabasz')  
plt.legend()
plt.show()plt.plot(range(2, 11), Davies_Bouldin_scores, marker='o', label='Davies-Bouldin Index')  
plt.title('Davies-Bouldin Index for Different n_clusters-AgglomerativeClustering')  
plt.xlabel('Number of clusters (n_clusters)')  
plt.ylabel('Davies-Bouldin Index')  
plt.legend()
plt.show()

运行结果:
在这里插入图片描述
FCM算法:

代码:

import matplotlib.pyplot as plt # 导入matplotlib的库
import numpy as np # 导入numpy的包
from sklearn import datasets #导入数据集
from sklearn.decomposition import PCA # PCA主成分分析类
from sklearn.metrics import silhouette_score
from sklearn.metrics import calinski_harabasz_score
from sklearn.metrics import davies_bouldin_score
from sklearn.cluster import FeatureAgglomeration
from sklearn.cluster import AgglomerativeClustering
iris = datasets.load_iris() #加载iris数据集
X = iris.data #加载特征数据
# Y = iris.target #加载标签数据
#绘制数据分布图
y = iris.target
X = iris.data
#X.shape
#调用PCA
pca = PCA(n_components=2) # 降到2维
pca = pca.fit(X) #拟合模型
X_dr = pca.transform(X) #获取新矩阵 (降维后的)
#X_dr#也可以fit_transform一步到位
#X_dr = PCA(2).fit_transform(X)#plt.figure()
#plt.scatter(X_dr[y==0, 0], X_dr[y==0, 1], c="red", label=iris.target_names[0]) 
#plt.scatter(X_dr[y==1, 0], X_dr[y==1, 1], c="black", label=iris.target_names[1])
#plt.scatter(X_dr[y==2, 0], X_dr[y==2, 1], c="orange", label=iris.target_names[2])
#plt.legend()
#plt.title('PCA of IRIS dataset')
#plt.show()print("===K-means聚类===")
from sklearn.cluster import KMeans # 引入KMeans模块
def FCM(X, c_clusters=3, m=2, eps=10):membership_mat = np.random.random((len(X), c_clusters))   # 生成随机二维数组shape(150,3),随机初始化隶属矩阵# 这一步的操作是为了使Xi的隶属度总和为1membership_mat = np.divide(membership_mat, np.sum(membership_mat, axis=1)[:, np.newaxis])while True:working_membership_mat = membership_mat ** m   # shape->(150,3)# 根据公式计算聚类中心点Centroids.shape->(3,4)Centroids = np.divide(np.dot(working_membership_mat.T, X), np.sum(working_membership_mat.T, axis=1)[:, np.newaxis])# 该矩阵保存所有实点到每个聚类中心的欧式距离n_c_distance_mat = np.zeros((len(X), c_clusters)) # shape->(150,3)for i, x in enumerate(X):for j, c in enumerate(Centroids):n_c_distance_mat[i][j] = np.linalg.norm(x-c, 2)   # 计算l2范数(欧氏距离)new_membership_mat = np.zeros((len(X), c_clusters))# 根据公式计算模糊矩阵Ufor i, x in enumerate(X):for j, c in enumerate(Centroids):new_membership_mat[i][j] = 1. / np.sum((n_c_distance_mat[i][j] / n_c_distance_mat[i]) ** (2 / (m-1)))if np.sum(abs(new_membership_mat - membership_mat)) < eps:breakmembership_mat = new_membership_matreturn np.argmax(new_membership_mat, axis=1)# 评估指标列表  
silhouette_avg_scores = []  Calinski_Harabasz_scores = []  
Davies_Bouldin_scores = []  
# 遍历不同的n_clusters值  
for n_clusters in range(2, 11):  print(n_clusters)fcm =FCM(X, c_clusters=n_clusters)print(len(fcm ))silhouette_avg = silhouette_score(X, fcm)  print(silhouette_avg)
# 2. Calinski-Harabasz指数calinski_haraba=calinski_harabasz_score(X, fcm)print(calinski_haraba)# 3. DB指数(Davies-Bouldin Index)davies_bouldin=davies_bouldin_score(X,fcm)Davies_Bouldin_scores.append(davies_bouldin)Calinski_Harabasz_scores.append(calinski_haraba)silhouette_avg_scores.append(silhouette_avg)  # 绘制图形  
plt.plot(range(2, 11), silhouette_avg_scores, marker='o', label='Silhouette Coefficient')  plt.title('Silhouette Coefficient for Different n_clusters-FCM')  
plt.xlabel('Number of clusters (n_clusters)')  
plt.ylabel('Silhouette Coefficient')  
plt.legend()
plt.show()plt.plot(range(2, 11), Calinski_Harabasz_scores, marker='o', label=' Calinski-Harabasz')  
plt.title(' Calinski-Harabaszfor Different n_clusters-FCM')  
plt.xlabel('Number of clusters (n_clusters)')  
plt.ylabel('Calinski Harabasz')  
plt.legend()
plt.show()plt.plot(range(2, 11), Davies_Bouldin_scores, marker='o', label='Davies-Bouldin Index')  
plt.title('Davies-Bouldin Index for Different n_clusters-FCM')  
plt.xlabel('Number of clusters (n_clusters)')  
plt.ylabel('Davies-Bouldin Index')  
plt.legend()
plt.show()

在这里插入图片描述
lvp算法:

import matplotlib.pyplot as plt # 导入matplotlib的库
import numpy as np # 导入numpy的包
from sklearn import datasets #导入数据集
from sklearn.decomposition import PCA # PCA主成分分析类
from sklearn.metrics import silhouette_score
from sklearn.metrics import calinski_harabasz_score
from sklearn.metrics import davies_bouldin_score
from sklearn.cluster import FeatureAgglomeration
from sklearn.cluster import AgglomerativeClustering# 使用LVQ进行聚类
from sklearn_lvq import GlvqModeliris = datasets.load_iris() #加载iris数据集
X = iris.data #加载特征数据
# Y = iris.target #加载标签数据
#绘制数据分布图
y = iris.target
X = iris.data
#X.shape
#调用PCA
pca = PCA(n_components=2) # 降到2维
pca = pca.fit(X) #拟合模型
X_dr = pca.transform(X) #获取新矩阵 (降维后的)
#X_dr#也可以fit_transform一步到位
#X_dr = PCA(2).fit_transform(X)#plt.figure()
#plt.scatter(X_dr[y==0, 0], X_dr[y==0, 1], c="red", label=iris.target_names[0]) 
#plt.scatter(X_dr[y==1, 0], X_dr[y==1, 1], c="black", label=iris.target_names[1])
#plt.scatter(X_dr[y==2, 0], X_dr[y==2, 1], c="orange", label=iris.target_names[2])
#plt.legend()
#plt.title('PCA of IRIS dataset')
#plt.show()
def FCM(X, c_clusters=3, m=2, eps=10):membership_mat = np.random.random((len(X), c_clusters))   # 生成随机二维数组shape(150,3),随机初始化隶属矩阵# 这一步的操作是为了使Xi的隶属度总和为1membership_mat = np.divide(membership_mat, np.sum(membership_mat, axis=1)[:, np.newaxis])while True:working_membership_mat = membership_mat ** m   # shape->(150,3)# 根据公式计算聚类中心点Centroids.shape->(3,4)Centroids = np.divide(np.dot(working_membership_mat.T, X), np.sum(working_membership_mat.T, axis=1)[:, np.newaxis])# 该矩阵保存所有实点到每个聚类中心的欧式距离n_c_distance_mat = np.zeros((len(X), c_clusters)) # shape->(150,3)for i, x in enumerate(X):for j, c in enumerate(Centroids):n_c_distance_mat[i][j] = np.linalg.norm(x-c, 2)   # 计算l2范数(欧氏距离)new_membership_mat = np.zeros((len(X), c_clusters))# 根据公式计算模糊矩阵Ufor i, x in enumerate(X):for j, c in enumerate(Centroids):new_membership_mat[i][j] = 1. / np.sum((n_c_distance_mat[i][j] / n_c_distance_mat[i]) ** (2 / (m-1)))if np.sum(abs(new_membership_mat - membership_mat)) < eps:breakmembership_mat = new_membership_matreturn np.argmax(new_membership_mat, axis=1)# 评估指标列表  
silhouette_avg_scores = []  Calinski_Harabasz_scores = []  
Davies_Bouldin_scores = []  
from sklearn.datasets import make_blobs# 遍历不同的n_clusters值  
for n_clusters in range(2, 11):  print(n_clusters)zX, y_true = make_blobs(n_samples=150, centers=n_clusters, cluster_std=0.6, random_state=0)lvq = GlvqModel()lvq.fit(X, y_true)# 可视化聚类结果fcm = lvq.predict(X)print(len(fcm ))silhouette_avg = silhouette_score(X, fcm)  print(silhouette_avg)
# 2. Calinski-Harabasz指数calinski_haraba=calinski_harabasz_score(X, fcm)print(calinski_haraba)# 3. DB指数(Davies-Bouldin Index)davies_bouldin=davies_bouldin_score(X,fcm)Davies_Bouldin_scores.append(davies_bouldin)Calinski_Harabasz_scores.append(calinski_haraba)silhouette_avg_scores.append(silhouette_avg)  # 绘制图形  
plt.plot(range(2, 11), silhouette_avg_scores, marker='o', label='Silhouette Coefficient')  plt.title('Silhouette Coefficient for Different n_clusters--lvp')  
plt.xlabel('Number of clusters (n_clusters)')  
plt.ylabel('Silhouette Coefficient')  
plt.legend()
plt.show()plt.plot(range(2, 11), Calinski_Harabasz_scores, marker='o', label=' Calinski-Harabasz')  
plt.title(' Calinski-Harabaszfor Different n_clusters--lvp')  
plt.xlabel('Number of clusters (n_clusters)')  
plt.ylabel('Calinski Harabasz')  
plt.legend()
plt.show()plt.plot(range(2, 11), Davies_Bouldin_scores, marker='o', label='Davies-Bouldin Index')  
plt.title('Davies-Bouldin Index for Different n_clusters-lvp')  
plt.xlabel('Number of clusters (n_clusters)')  
plt.ylabel('Davies-Bouldin Index')  
plt.legend()
plt.show()

在这里插入图片描述
最后我们还做了一个所有算法最优参数汇总的代码:

import matplotlib.pyplot as plt # 导入matplotlib的库
import numpy as np # 导入numpy的包
from sklearn import datasets #导入数据集
from sklearn.decomposition import PCA # PCA主成分分析类
iris = datasets.load_iris() #加载iris数据集
X = iris.data #加载特征数据
# Y = iris.target #加载标签数据
#绘制数据分布图
y = iris.target
X = iris.data
#X.shape
#调用PCA
pca = PCA(n_components=2) # 降到2维
pca = pca.fit(X) #拟合模型
X_dr = pca.transform(X) #获取新矩阵 (降维后的)
#X_dr#也可以fit_transform一步到位
X_dr = PCA(2).fit_transform(X)plt.figure()
plt.scatter(X_dr[y==0, 0], X_dr[y==0, 1], c="red", label=iris.target_names[0]) 
plt.scatter(X_dr[y==1, 0], X_dr[y==1, 1], c="black", label=iris.target_names[1])
plt.scatter(X_dr[y==2, 0], X_dr[y==2, 1], c="orange", label=iris.target_names[2])
plt.legend()
plt.title('PCA of IRIS dataset')
plt.show()print("===K-means聚类===")
from sklearn.cluster import KMeans # 引入KMeans模块
estimator = KMeans(n_clusters=3).fit(X)  # 构造聚类器
label_pred = estimator.labels_  # 获取聚类标签
#绘制k-means结果
x0 = X_dr[label_pred == 0]# 获取聚类标签等于0的话,则赋值给x0
x1 = X_dr[label_pred == 1]# 获取聚类标签等于1的话,则赋值给x1
x2 = X_dr[label_pred == 2]# 获取聚类标签等于2的话,则赋值给x2
plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label 0')#画label 0的散点图
plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label 1')#画label 1的散点图
plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label 2')#画label 2的散点图
plt.xlabel('K-means')# 设置X轴的标签为K-means
# plt.legend(loc=2)# 设置图标在左上角
plt.title("kmeans+PCA")
plt.show()x0 = X[label_pred == 0]# 获取聚类标签等于0的话,则赋值给x0
x1 = X[label_pred == 1]# 获取聚类标签等于1的话,则赋值给x1
x2 = X[label_pred == 2]# 获取聚类标签等于2的话,则赋值给x2
plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label 0')#画laplt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label 1')#画label 1的散点图
plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label 2')#画label 2的散点图
plt.xlabel('K-means')# 设置X轴的标签为K-means
# plt.legend(loc=2)# 设置图标在左上角
plt.title("kmeans-features[0:2]")
plt.show()#密度聚类之DBSCAN算法
print("===DBSCAN聚类===")
from sklearn.cluster import DBSCAN # 引入DBSCAN模块
dbscan = DBSCAN(eps=1.0, min_samples=3).fit(X) #导入DBSCAN模块进行训练,在一个邻域的半径内min_samples数的邻域eps被认为是一个簇。请记住,初始点包含在min_samples中。
label_pred = dbscan.labels_ # labels为每个数据的簇标签,不在任何“高密度”集群中的“noisy”样本返回-1x0 = X[label_pred == 0] # 获取聚类标签等于0的话,则赋值给x0
x1 = X[label_pred == 1] # 获取聚类标签等于1的话,则赋值给x1
x2 = X[label_pred == 2] # 获取聚类标签等于2的话,则赋值给x2
plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label0') # 画label 0的散点图
plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label1') # 画label 1的散点图
plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label2') # 画label 2的散点图
plt.xlabel('DBSCAN')# 设置X轴的标签为DBSCAN
plt.legend(loc=2)# 设置图标在左上角
plt.title("DBSCAN-features[0:2]")
plt.show()x0 = X_dr[label_pred == 0]# 获取聚类标签等于0的话,则赋值给x0
x1 = X_dr[label_pred == 1]# 获取聚类标签等于1的话,则赋值给x1
x2 = X_dr[label_pred == 2]# 获取聚类标签等于2的话,则赋值给x2
plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label 0')#画label 0的散点图
plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label 1')#画label 1的散点图
plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label 2')#画label 2的散点图
plt.xlabel('DBSCAN')# 设置X轴的标签为K-means
# plt.legend(loc=2)# 设置图标在左上角
plt.title("DBSCAN+PCA")
plt.show()
from sklearn_lvq import GlvqModelimport numpy as np
from matplotlib import pyplot as plt
from scipy.cluster.hierarchy import dendrogram
from scipy.cluster.hierarchy import linkage, dendrogram
def getLinkageMat(model):children = model.children_cs = np.zeros(len(children))N = len(model.labels_)for i,child in enumerate(children):count = 0for idx in child:count += 1 if idx < N else cs[idx - N]cs[i] = countreturn np.column_stack([children, model.distances_, cs])from sklearn.cluster import AgglomerativeClustering
from sklearn.datasets import make_blobsmodel = AgglomerativeClustering( n_clusters=3)model = model.fit(X)label_pred = model.labels_ # labels为每个数据的簇标签,不在任何“高密度”集群中的“noisy”样本返回-1Z = linkage(X, method='ward', metric='euclidean')
p = dendrogram(Z, 0)
plt.show()x0 = X_dr[label_pred == 0]# 获取聚类标签等于0的话,则赋值给x0
x1 = X_dr[label_pred == 1]# 获取聚类标签等于1的话,则赋值给x1
x2 = X_dr[label_pred == 2]# 获取聚类标签等于2的话,则赋值给x2
plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label 0')#画label 0的散点图
plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label 1')#画label 1的散点图
plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label 2')#画label 2的散点图
plt.xlabel('AgglomerativeClustering')# 设置X轴的标签为K-means
# plt.legend(loc=2)# 设置图标在左上角
plt.title("AgglomerativeClustering+PCA")
plt.show()def FCM(X, c_clusters=3, m=2, eps=10):membership_mat = np.random.random((len(X), c_clusters))   # 生成随机二维数组shape(150,3),随机初始化隶属矩阵# 这一步的操作是为了使Xi的隶属度总和为1membership_mat = np.divide(membership_mat, np.sum(membership_mat, axis=1)[:, np.newaxis])while True:working_membership_mat = membership_mat ** m   # shape->(150,3)# 根据公式计算聚类中心点Centroids.shape->(3,4)Centroids = np.divide(np.dot(working_membership_mat.T, X), np.sum(working_membership_mat.T, axis=1)[:, np.newaxis])# 该矩阵保存所有实点到每个聚类中心的欧式距离n_c_distance_mat = np.zeros((len(X), c_clusters)) # shape->(150,3)for i, x in enumerate(X):for j, c in enumerate(Centroids):n_c_distance_mat[i][j] = np.linalg.norm(x-c, 2)   # 计算l2范数(欧氏距离)new_membership_mat = np.zeros((len(X), c_clusters))# 根据公式计算模糊矩阵Ufor i, x in enumerate(X):for j, c in enumerate(Centroids):new_membership_mat[i][j] = 1. / np.sum((n_c_distance_mat[i][j] / n_c_distance_mat[i]) ** (2 / (m-1)))if np.sum(abs(new_membership_mat - membership_mat)) < eps:breakmembership_mat = new_membership_matreturn np.argmax(new_membership_mat, axis=1)fcm =FCM(X, c_clusters=3)x0 = X_dr[fcm == 0]# 获取聚类标签等于0的话,则赋值给x0
x1 = X_dr[fcm == 1]# 获取聚类标签等于1的话,则赋值给x1
x2 = X_dr[fcm == 2]# 获取聚类标签等于2的话,则赋值给x2
plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label 0')#画label 0的散点图
plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label 1')#画label 1的散点图
plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label 2')#画label 2的散点图
plt.xlabel('FCM')# 设置X轴的标签为K-means
# plt.legend(loc=2)# 设置图标在左上角
plt.title("FCM+PCA")
plt.show()zX, y_true = make_blobs(n_samples=150, centers=2, cluster_std=0.6, random_state=0)
lvq = GlvqModel()
lvq.fit(X, y)# 可视化聚类结果
lvqp = lvq.predict(X)x0 = X_dr[lvqp == 0]# 获取聚类标签等于0的话,则赋值给x0
x1 = X_dr[lvqp == 1]# 获取聚类标签等于1的话,则赋值给x1
x2 = X_dr[lvqp == 2]# 获取聚类标签等于2的话,则赋值给x2
plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label 0')#画label 0的散点图
plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label 1')#画label 1的散点图
plt.scatter(x2[:, 0], x2[:, 1], c="blue", marker='+', label='label 2')#画label 2的散点图
plt.xlabel('lvq')# 设置X轴的标签为K-means
# plt.legend(loc=2)# 设置图标在左上角
plt.title("lvq+PCA")
plt.show()

运行结果:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

这篇关于基于鸢尾花数据集的四种聚类算法(kmeans,层次聚类,DBSCAN,FCM)和学习向量量化对比的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/966975

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

使用Python实现Word文档的自动化对比方案

《使用Python实现Word文档的自动化对比方案》我们经常需要比较两个Word文档的版本差异,无论是合同修订、论文修改还是代码文档更新,人工比对不仅效率低下,还容易遗漏关键改动,下面通过一个实际案例... 目录引言一、使用python-docx库解析文档结构二、使用difflib进行差异比对三、高级对比方

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十

使用SpringBoot+InfluxDB实现高效数据存储与查询

《使用SpringBoot+InfluxDB实现高效数据存储与查询》InfluxDB是一个开源的时间序列数据库,特别适合处理带有时间戳的监控数据、指标数据等,下面详细介绍如何在SpringBoot项目... 目录1、项目介绍2、 InfluxDB 介绍3、Spring Boot 配置 InfluxDB4、I