第七节课《OpenCompass司南--大模型评测实战》

2024-05-07 07:04

本文主要是介绍第七节课《OpenCompass司南--大模型评测实战》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCompass 大模型评测实战_哔哩哔哩_bilibili

https://github.com/InternLM/Tutorial/blob/camp2/opencompass/readme.md

InternStudio

一、通过评测促进模型发展

  • 面向未来拓展能力维度:评测体系需增加新能力维度(数学、复杂推理、逻辑推理、代码和智能体等),以全面评估模型性能。
  • 扎根通用能力聚焦垂直行业:在医疗、金融、法律等专业领域,评测需结合行业知识和规范,以评估模型的行业适用性。
  • 高质量中文基准:针对中文场景,需要开发能力准确评估其能力的中文评测基准,促进中文社区的大模型发展。
  • 性能评测反哺能力迭代:通过深入分析评测性能,探索模型能力形成机制,发现模型不足,研究针对性提升策略。

二、大语言模型评测中的挑战

  • 全面性
    • 大模型应用场景千变万化。
    • 模型能力演进迅速
    • 如何设计和构造可扩展的能力维度体系
  • 评测成本
    • 评测数十万道题需要大量算力资源
    • 基于人工打分的主观评测成本高昂
  • 数据污染
    • ​​​​​​​海量语料不可避免带来评测集污染
    • 亟需可靠的数据污染检测技术
    • 如何设计可动态更新高质量评测基准
  • 鲁棒性
    • ​​​​​​​大模型对提示词十分敏感
    • 多次采样情况下模型性能不稳定

三、如何评测大模型

1、根据模型类型的不同评测模型

  • 基座模型:不经过微调
  • 对话模型:
    • 指令数据有监督微调(SFT)
    • 人类偏好对齐(RLHF)
  • 公开权重的开源模型
    • 使用GPU/推理加速卡进行本地推理
  • API模型
    • 发送网络请求获取回复

2、根据评测本身的方式(客观评测与主观评测)

  • 客观评测
    • 问答题
    • 选择题
  • 主观评测:写一首诗
    • 人类评价
    • 模型评价

3、提示词工程

  • 做提示词工程,丰富题目,给模型做推理,然后做评测,评测结果更加真实反映模型性能。

  • 小样本学习:
  • 思维链技术:

4、长文本评测

  • 大海捞针:

汇集社区力量:工具-基准-榜单 三位一体

四、CompassRank:中立全面的性能榜单

  • 大模型
  • 多模态

五、CompassKit:大模型评测全栈工具链

  • 数据污染检查
    • 多种数据污染检测方法
    • 支持主流数据集污染检测
  • 更丰富的模型推理接入
    • 支持多个商业模型API
    • 支持多种推理后端
  • 长文本能力评测
    • 支持长文本大海捞针测试
    • 支持多个主流长文本评测基准
  • 中英文双语主观评测
    • 支持基于大模型评价的主观评测
    • 提供模型打分、模型对战多种能力
    • 灵活切换上百种评价模型

OpenCompass评测流水线

自定义任意模型和数据集,多模型和数据集进行切分,做到并行化(多GPU或任务),多种输出方式

  • VLMEvalKit:多模态评测工具
  • Code-Evaluator:代码评测工具
  • MixtralKit MoE:模型入门工具

六、CompassHub:高质量评测基准社区

开源开放,共建共享的大模型评测基准社区

七、能力维度全面升级

八、夯实基础:自研高质量大模型评测基准

  • MathBench:多层次数学能力评测基准(计算、小学、初中、高中、大学、CE平均分)
    • 梯度难度
    • 题目来源多种多样
    • 循环测评
  •  CIBench:代码解释器能力评测基准
    • 任务和软件的多样性
    • 评测基准具有高度可拓展性
    • 多难度等级设计(10轮以上交互)
  • T-Eval:大模型细粒度工具能力评测基准
    • 规划
    • 检索
    • 指令遵循
    • 推理
    • 理解
    • 评价

各行业垂直领域合作

九、实战

1、安装、

studio-conda -o internlm-base -t opencompass
source activate opencompass
git clone -b 0.2.4 https://github.com/open-compass/opencompass
cd opencompass
pip install -e .
pip install -r requirements.txt
2、数据准备
cp /share/temp/datasets/OpenCompassData-core-20231110.zip /root/opencompass/
unzip OpenCompassData-core-20231110.zip

3、查看支持的数据集和模型

列出所有跟 InternLM 及 C-Eval 相关的配置

python tools/list_configs.py internlm ceval

4、启动评测

评测 InternLM2-Chat-1.8B 模型在 C-Eval 数据集上的性能。 OpenCompass 默认并行启动评估过程。--debug 模式启动评估,并检查是否存在问题。

pip install protobuf
export MKL_SERVICE_FORCE_INTEL=1
#或
export MKL_THREADING_LAYER=GNU

 

python run.py
--datasets ceval_gen \ #数据集
--hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace 模型路径
--tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace tokenizer 路径(如果与模型路径相同,可以省略)
--tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True \  # 构建 tokenizer 的参数
--model-kwargs device_map='auto' trust_remote_code=True \  # 构建模型的参数
--max-seq-len 1024 \  # 模型可以接受的最大序列长度
--max-out-len 16 \  # 生成的最大 token 数
--batch-size 2  \  # 批量大小
--num-gpus 1  # 运行模型所需的 GPU 数量
--work-dir "xxxx/xxx" #结果保存路径,默认outputs/default
--reuse latest #指定时间戳,接着之前的时间戳去跑
--debug #debug模式显示,默认存在log文件夹下
python run.py --datasets ceval_gen --hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True --model-kwargs trust_remote_code=True device_map='auto' --max-seq-len 1024 --max-out-len 16 --batch-size 2 --num-gpus 1 --debug

这篇关于第七节课《OpenCompass司南--大模型评测实战》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/966655

相关文章

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

自研四振子全向增益天线! 中兴问天BE6800Pro+路由器拆机和详细评测

《自研四振子全向增益天线!中兴问天BE6800Pro+路由器拆机和详细评测》中兴问天BE6800Pro+路由器已经上市,新品配备自研四振子全向增益天线,售价399元,国补到手339.15元,下面我们... 中兴问天BE6800Pro+路由器自上市以来,凭借其“旗舰性能,中端价格”的定位,以及搭载三颗自研芯片

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法