CNN实现fashion_mnist数据集分类(tensorflow)

2024-05-06 04:44

本文主要是介绍CNN实现fashion_mnist数据集分类(tensorflow),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、查看tensorflow版本

import tensorflow as tfprint('Tensorflow Version:{}'.format(tf.__version__))
print(tf.config.list_physical_devices())

在这里插入图片描述

2、加载fashion_mnist数据与预处理

import numpy as np
(train_images,train_labels),(test_images,test_labels) = tf.keras.datasets.fashion_mnist.load_data()
# print(train_images.shape) # (60000, 28, 28)
# print(train_labels.shape) # (60000,)
# print(test_images.shape) # (10000, 28, 28)
# print(test_labels.shape) # (10000,)
train_images = np.expand_dims(train_images, -1)
# print(train_images.shape) # (个数, hight, width,channels)=(60000, 28, 28, 1)

3、CNN模型构建

from keras.layers import Input,Dense,Dropout
from keras.layers import Conv2D,MaxPool2D,GlobalAvgPool2Dmodel = tf.keras.Sequential()
model.add(Input(shape=(28,28,1)))  # train_images.shape[1:]
model.add(Conv2D(filters=64,kernel_size=(3,3),activation='relu',padding='same')) # 增加filter个数,增加模型拟合能力
model.add(Conv2D(filters=64,kernel_size=(3,3),activation='relu',padding='same'))
model.add(MaxPool2D())  # 默认2*2. 池化层扩大视野
model.add(Dropout(0.2)) # 防止过拟合
model.add(Conv2D(filters=128,kernel_size=(3,3),activation='relu',padding='same'))
model.add(Conv2D(filters=128,kernel_size=(3,3),activation='relu',padding='same'))
model.add(MaxPool2D())  # 默认2*2
model.add(Dropout(0.2)) # 防止过拟合
model.add(Conv2D(filters=256,kernel_size=(3,3),activation='relu'))
model.add(GlobalAvgPool2D()) # 全局平均池化
model.add(Dense(10,activation='softmax'))
model.summary()

在这里插入图片描述

4、模型配置与训练

model.compile(optimizer='adam',loss='sparse_categorical_crossentropy',metrics=['acc'])H = model.fit(x=train_images,y=train_labels,validation_split=0.2,# validation_data=(X_test,y_test),epochs=10,batch_size=64,verbose=1)

在这里插入图片描述

5、损失函数和准确率分析

根据损失函数和准确率,判断模型是否过拟合或者欠拟合,不断调整网络结构,使得模型最优。

import matplotlib.pyplot as plt
fig = plt.gcf()
fig.set_size_inches(12,4)
plt.subplot(1,2,1)
plt.plot(H.epoch, H.history['loss'], label='loss')
plt.plot(H.epoch, H.history['val_loss'], label='val_loss')
plt.legend()
plt.title('loss')plt.subplot(1,2,2)
plt.plot(H.epoch, H.history['acc'], label='acc')
plt.plot(H.epoch, H.history['val_acc'], label='val_acc')
plt.legend()
plt.title('acc')

在这里插入图片描述

这篇关于CNN实现fashion_mnist数据集分类(tensorflow)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/963455

相关文章

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Linux挂载linux/Windows共享目录实现方式

《Linux挂载linux/Windows共享目录实现方式》:本文主要介绍Linux挂载linux/Windows共享目录实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录文件共享协议linux环境作为服务端(NFS)在服务器端安装 NFS创建要共享的目录修改 NFS 配

通过React实现页面的无限滚动效果

《通过React实现页面的无限滚动效果》今天我们来聊聊无限滚动这个现代Web开发中不可或缺的技术,无论你是刷微博、逛知乎还是看脚本,无限滚动都已经渗透到我们日常的浏览体验中,那么,如何优雅地实现它呢?... 目录1. 早期的解决方案2. 交叉观察者:IntersectionObserver2.1 Inter

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S