三种强大的物体识别算法——SIFT/SURF、haar特征、广义hough变换

本文主要是介绍三种强大的物体识别算法——SIFT/SURF、haar特征、广义hough变换,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!



转自:http://blog.csdn.net/cy513/article/details/4285579


SIFT/SURF基于灰度图(适用于:刚性物体,如建筑物)

一、首先建立图像金字塔,形成三维的图像空间,通过Hessian矩阵获取每一层的局部极大值,然后进行在极值点周围26个点进行NMS,从而得到粗略的特征点,再使用二次插值法得到精确特征点所在的层(尺度),即完成了尺度不变。

二、在特征点选取一个与尺度相应的邻域,求出主方向,其中SIFT采用在一个正方形邻域内统计所有点的梯度方向,找到占80%以上的方向作为主方向;而SURF则选择圆形邻域,并且使用活动扇形的方法求出特征点主方向,以主方向对齐即完成旋转不变。

三、以主方向为轴可以在每个特征点建立坐标,SIFT在特征点选择一块大小与尺度相应的方形区域,分成16块,统计每一块沿着八个方向占的比例,于是特征点形成了128维特征向量,对图像进行归一化则完成强度不变;而SURF分成64块,统计每一块的dx,dy,|dx|,|dy|的累积和,同样形成128维向量,再进行归一化则完成了对比度不变与强度不变。

 


haar特征也是基于灰度图(人脸检测)

首先通过大量的具有比较明显的haar特征(矩形)的物体图像用模式识别的方法训练出分类器,分类器是个级联的,每级都以大概相同的识别率保留进入下一级的具有物体特征的候选物体,而每一级的子分类器则由许多haar特征构成(由积分图像计算得到,并保存下位置),有水平的、竖直的、倾斜的,并且每个特征带一个阈值和两个分支值,每级子分类器带一个总的阈值。识别物体的时候,同样计算积分图像为后面计算haar特征做准备,然后采用与训练的时候有物体的窗口同样大小的窗口遍历整幅图像,以后逐渐放大窗口,同样做遍历搜索物体;每当窗口移动到一个位置,即计算该窗口内的haar特征,加权后与分类器中haar特征的阈值比较从而选择左或者右分支值,累加一个级的分支值与相应级的阈值比较,大于该阈值才可以通过进入下一轮筛选。当通过分类器所以级的时候说明这个物体以大概率被识别。




广义hough变换同样基于灰度图 

使用轮廓作为特征,融合了梯度信息,以投票的方式识别物体,在本blog的另一篇文章中有详细讨论,这里不再赘述。


特点异同对比及其适用场合:

 

三种算法都只是基于强度(灰度)信息,都是特征方法,但SIFT/SURF的特征是一种具有强烈方向性及亮度性的特征,这使得它适用于刚性形变,稍有透视形变的场合;haar特征识别方法带有一点人工智能的意味,对于像人脸这种有明显的、稳定结构的haar特征的物体最适用,只要结构相对固定即使发生扭曲等非线性形变依然可识别;广义hough变换完全是精确的匹配,可得到物体的位置方向等参数信息。前两种方法基本都是通过先获取局部特征然后再逐个匹配,只是局部特征的计算方法不同,SIFT/SURF比较复杂也相对稳定,haar方法比较简单,偏向一种统计的方法形成特征,这也使其具有一定的模糊弹性;广义hough变换则是一种全局的特征——轮廓梯度,但也可以看做整个轮廓的每一个点的位置和梯度都是特征,每个点都对识别有贡献,用直观的投票,看票数多少去确定是否识别出物体。





HOG特征(行人检测)

这篇关于三种强大的物体识别算法——SIFT/SURF、haar特征、广义hough变换的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/960600

相关文章

Python基于微信OCR引擎实现高效图片文字识别

《Python基于微信OCR引擎实现高效图片文字识别》这篇文章主要为大家详细介绍了一款基于微信OCR引擎的图片文字识别桌面应用开发全过程,可以实现从图片拖拽识别到文字提取,感兴趣的小伙伴可以跟随小编一... 目录一、项目概述1.1 开发背景1.2 技术选型1.3 核心优势二、功能详解2.1 核心功能模块2.

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Python验证码识别方式(使用pytesseract库)

《Python验证码识别方式(使用pytesseract库)》:本文主要介绍Python验证码识别方式(使用pytesseract库),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全... 目录1、安装Tesseract-OCR2、在python中使用3、本地图片识别4、结合playwrigh

java对接第三方接口的三种实现方式

《java对接第三方接口的三种实现方式》:本文主要介绍java对接第三方接口的三种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录HttpURLConnection调用方法CloseableHttpClient调用RestTemplate调用总结在日常工作

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

SpringBoot实现接口数据加解密的三种实战方案

《SpringBoot实现接口数据加解密的三种实战方案》在金融支付、用户隐私信息传输等场景中,接口数据若以明文传输,极易被中间人攻击窃取,SpringBoot提供了多种优雅的加解密实现方案,本文将从原... 目录一、为什么需要接口数据加解密?二、核心加解密算法选择1. 对称加密(AES)2. 非对称加密(R

基于Go语言实现Base62编码的三种方式以及对比分析

《基于Go语言实现Base62编码的三种方式以及对比分析》Base62编码是一种在字符编码中使用62个字符的编码方式,在计算机科学中,,Go语言是一种静态类型、编译型语言,它由Google开发并开源,... 目录一、标准库现状与解决方案1. 标准库对比表2. 解决方案完整实现代码(含边界处理)二、关键实现细

MySQL精准控制Binlog日志数量的三种方案

《MySQL精准控制Binlog日志数量的三种方案》作为数据库管理员,你是否经常为服务器磁盘爆满而抓狂?Binlog就像数据库的“黑匣子”,默默记录着每一次数据变动,但若放任不管,几天内这些日志文件就... 目录 一招修改配置文件:永久生效的控制术1.定位my.cnf文件2.添加核心参数不重启热更新:高手应

在 PyQt 加载 UI 三种常见方法

《在PyQt加载UI三种常见方法》在PyQt中,加载UI文件通常指的是使用QtDesigner设计的.ui文件,并将其转换为Python代码,以便在PyQt应用程序中使用,这篇文章给大家介绍在... 目录方法一:使用 uic 模块动态加载 (不推荐用于大型项目)方法二:将 UI 文件编译为 python 模

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ