用keras识别狗狗

2024-05-04 13:20
文章标签 keras 识别 狗狗

本文主要是介绍用keras识别狗狗,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、需求场景

从照片从识别出狗狗

from keras.applications.resnet50 import ResNet50
from keras.preprocessing import image
from keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np# 加载预训练的ResNet50模型
model = ResNet50(weights='imagenet')
def recognize_dog(img_path):# 加载图片并调整尺寸为224x224img = image.load_img(img_path, target_size=(224, 224))# 将图片转换为numpy数组x = image.img_to_array(img)# 扩展维度以适应模型的输入要求x = np.expand_dims(x, axis=0)# 预处理图片x = preprocess_input(x)# 使用模型进行预测preds = model.predict(x)# 解码预测结果,得到前3个最可能的类别及其概率results = decode_predictions(preds, top=3)[0]# 检查是否包含"dog"for result in results:print(result)# 测试
print(recognize_dog('e:\\testImage\dog1.jpg'))
print(recognize_dog('e:\\testImage\dog2.jpg'))

"C:\Program Files (x86)\Microsoft Visual Studio\Shared\Python39_64\python.exe" E:\PycharmProjects\pythonProject\test20240503-001.py 
2024-05-03 13:09:11.097463: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-05-03 13:09:11.755791: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`.
2024-05-03 13:09:13.229779: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.
To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.
1/1 ━━━━━━━━━━━━━━━━━━━━ 1s 1s/step
('n02099712', 'Labrador_retriever', 0.755565)
('n02109047', 'Great_Dane', 0.15936635)
('n02099267', 'flat-coated_retriever', 0.059484843)
None
1/1 ━━━━━━━━━━━━━━━━━━━━ 0s 78ms/step
('n02113186', 'Cardigan', 0.65025693)
('n02113023', 'Pembroke', 0.34579375)
('n02115641', 'dingo', 0.0023858186)
None

Process finished with exit code 0

 

二、知识点Keras

Keras是一个高级的神经网络框架,它用Python编写,旨在实现快速的实验和原型设计

解释说明

  • Keras是为了简化神经网络的构建和训练过程而设计的,它提供了一种简洁、直观的方式让用户能够轻松地定义和训练深度学习模型。
  • 作为一个高级API,Keras可以运行在多个后端之上,包括TensorFlow、Microsoft CNTK和Theano。这意味着用户可以利用这些后端引擎的强大功能,同时享受Keras提供的简洁和易用性。
  • Keras支持卷积神经网络(CNNs)和循环神经网络(RNNs),这两种网络是深度学习中非常重要的结构,广泛应用于图像识别、语音识别等领域。

使用示例

  • 安装Keras可以通过pip命令进行:pip install keras
  • 一个简单的Keras模型定义和训练的例子可能如下:
from keras.models import Sequential
from keras.layers import Densemodel = Sequential()
model.add(Dense(units=64, activation='relu', input_dim=100))
model.add(Dense(units=10, activation='softmax'))
model.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])model.fit(x_train, y_train, epochs=5, batch_size=32)

        Keras是一个强大的工具,特别适合那些希望快速开发和实验深度学习模型的用户。它的设计理念是简化复杂性,使得初学者和非专家也能够轻松上手深度学习项目。

三、知识点ImageNet

        ImageNet是一个用于计算机视觉识别项目的庞大数据库,它对图像识别和机器视觉领域的研究起到了重要作用。

        解释说明

  • ImageNet由美国斯坦福大学的计算机科学家创建,旨在模拟人类的视觉识别系统,以识别和分类图片中的物体。
  • 它是目前世界上最大的图像识别数据库之一,包含超过1400万张手动注释的图像,涵盖了2万多个类别。
  • 数据集是根据WordNet的层次结构组织起来的,每个节点或类别都包含了一系列相关的图像。
  • 在至少一百万个图像中,除了标注了物体类别,还提供了边界框信息,这对于目标检测任务尤其重要。

        ImageNet作为一个计算机视觉领域的重要资源,为图像识别和机器学习提供了宝贵的数据支持。正确使用ImageNet可以显著提升图像识别模型的性能,但同时也要注意合理使用和遵守相关规定。

 

机器之魂,人工智能,无所不能,充满神奇。

 

这篇关于用keras识别狗狗的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/959286

相关文章

使用PyTorch实现手写数字识别功能

《使用PyTorch实现手写数字识别功能》在人工智能的世界里,计算机视觉是最具魅力的领域之一,通过PyTorch这一强大的深度学习框架,我们将在经典的MNIST数据集上,见证一个神经网络从零开始学会识... 目录当计算机学会“看”数字搭建开发环境MNIST数据集解析1. 认识手写数字数据库2. 数据预处理的

Pytorch微调BERT实现命名实体识别

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著... 目录环境准备加载预训练BERT模型准备数据集标记与对齐微调 BERT最后总结环境准备在继续之前,确

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像

Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看... 目录1.获取图片2.目标识别3.背景坐标识别3.1 ddddocr3.2 打码平台4.坐标点击5.图

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

Clion不识别C代码或者无法跳转C语言项目怎么办?

如果是中文会显示: 此时只需要右击项目,或者你的源代码目录,将这个项目或者源码目录标记为项目源和头文件即可。 英文如下:

BERN2(生物医学领域)命名实体识别与命名规范化工具

BERN2: an advanced neural biomedical named entity recognition and normalization tool 《Bioinformatics》2022 1 摘要 NER和NEN:在生物医学自然语言处理中,NER和NEN是关键任务,它们使得从生物医学文献中自动提取实体(如疾病和药物)成为可能。 BERN2:BERN2是一个工具,

行为智能识别摄像机

行为智能识别摄像机 是一种结合了人工智能技术和监控摄像技术的先进设备,它能够通过深度学习算法对监控画面进行实时分析,自动识别和分析监控画面中的各种行为动作。这种摄像机在安防领域有着广泛的应用,可以帮助监控人员及时发现异常行为,并采取相应的措施。 行为智能识别摄像机可以有效预防盗窃事件。在商场、超市等公共场所安装这种摄像机,可以通过识别异常行为等情况,及时报警并阻止不安全行为的发生