Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

本文主要是介绍Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看...

1.获取图片

import re
import time
import ddddocr
import requests
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains
service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)
# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')
# 2.点击【文字点选验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()
# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lphpambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()
time.sleep(5)
# 要识别的目标图片
target_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_ques_back'
)
target_tag.screenshot("target.png")
# 识别图片
bg_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_bg'
)
bg_tag.screenshot("bg.png")
time.sleep(2000)
driver.close()

2.目标识别

截图每个字符,并基于ddddocr识别。

import re
import time
import ddddocr
import requests
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains
service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)
# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')
# 2.点击【滑动拼图验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()
# 3.点击开始验证
tag = 编程WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()
# 4.等待验证码出来
time.sleep(5)
# 5.识别任务图片
target_word_list = []
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")
for tag in tag_list:
    ocr = ddddocr.DdddOcr(show_ad=False)
    word = ocr.classification(tag.screenshot_as_png)
    target_word_list.append(word)
print("要识别的文字:", target_word_list)
time.sleep(2000)
driver.close()

3.背景坐标识别

3.1 ddddocr

能识别,但是发现默认识别率有点低,想要提升识别率,可以搭建Pytorch环境对模型进行训练,参考:https://github.com/sml2h3/dddd_trainer

import re
import time
import ddddocr
import requests
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains
from PIL import Image, ImageDraw
from io import BytesIO
service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)
# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')
# 2.点击【滑动拼图验证】
tRqmIHFag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()
# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()
# 4.等待验证码出来
time.sleep(5)
# 5.识别任务图片
target_word_list = []
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")
for tag in tag_list:
    ocr = ddddocr.DdddOcr(show_ad=False)
    word = ocr.classification(tag.screenshot_as_png)
    target_word_list.append(word)
print("要识别的文字:", target_word_list)
# 6.背景图片
bg_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_bg'
)
content = bg_tag.screenshot_as_png
# 7.识别背景中的所有文字并获取坐标
ocr = ddddocr.DdddOcr(show_ad=False, det=True)
poses = ocr.detection(content) # [(x1, y1, x2, y2), (x1, y1, x2, y2), x1, y1, x2, y2]
# 8.循环坐标中的每个文字并识别
bg_word_dict = {}
img = Image.open(BytesIO(content))
for box in poses:
    x1, y1, x2, y2 = box
    # 根据坐标获取每个文字的图片
    corp = img.crop(box)
    img_byte = BytesIO()
    corp.save(img_byte, 'png')
    # 识别文字
    ocr2 = ddddocr.DdddOcr(show_ad=False)
    word = ocr2.classification(img_byte.getvalue())  # 识别率低
    # 获取每个字的坐标  {"鸭":}
    bg_word_dict[word] = [int((x1 + x2) / 2), int((y1 + y2) / 2)]
print(bg_word_dict)
time.sleep(1000)
driver.close()

3.2 打码平台

https://www.chaojiying.com/

imporRqmIHFt base64
import requests
from hashlib import md5
file_bytes = open('5.jpg', 'rb').read()
res = requests.post(
    url='http://upload.chaojiying.net/Upload/Processing.php',
    data={
        'user': "deng",
        'pass2': md5("密码".encode('utf-8')).hexdigest(),
        'codetype': "9501",
        'file_base64': base64.b64encode(file_bytes)
    },
    headers={
        'Connection': 'Keep-Alive',
        'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
    }
)
res_dict = res.json()
print(res_dict)
# {'err_no': 0, 'err_str': 'OK', 'pic_id': '1234612060701120002', 'pic_str': '的,86,73|粉,111,38|菜,40,49|香,198,101', 'md5': 'faac71fc832b2ead01ffb4e813f3be60'}

结合极验案例截图+识别:

import re
import time
import ddddocr
import requests
import base64
import requests
from hashlib import md5
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains
from PIL import Image, ImageDraw
from io import BytesIO
service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)
# 1.打开首页
driver.get('httpswww.chinasem.cn://www.geetest.com/adaptive-captcha-demo')
# 2.点击【滑动拼图验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()
# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()
# 4.等待验证码出来
time.sleep(5)
# 5.识别任务图片
target_word_list = []
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")
for tag in tag_list:
    ocr = ddddocr.DdddOcr(show_ad=False)
    word = ocr.classification(tag.screenshot_as_png)
    target_word_list.append(word)
print("要识别的文字:", target_word_list)
# 6.背景图片
bg_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_bg'
)
content = bg_tag.screenshot_as_png
bg_tag.screenshot("bg.png")
# 7.识别背景中的所有文字并获取坐标
res = requests.post(
    url='http://upload.chaojiying.net/Upload/Processing.php',
    data={
        'user': "deng",
        'pass2': md5("密码".encode('utf-8')).hexdigest(),
        'codetype': "9501",
        'file_base64': base64.b64encode(content)
    },
    headers={
        'Connection': 'Keep-Alive',
        'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
    }
)
res_dict = res.json()
print(res_dict)
# 8.每个字的坐标  {"鸭":(196,85), ...}    target_word_list = ["花","鸭","字"]
bg_word_dict = {}
for item in res_dict["pic_str"].split("|"):
    word, x, y = item.split(",")
    bg_word_dict[word] = (x, y)
print(bg_word_dict)
time.sleep(1000)
driver.close()

4.坐标点击

根据坐标,在验证码上进行点击。

ActionChains(driver).move_to_element_with_offset(标签对象, xoffset=x, yoffset=y).click().perform()
import re
import time
import ddddocr
import requests
import base64
import requests
from hashlib import md5
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains
from PIL import Image, ImageDraw
from io import BytesIO
service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)
# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')
# 2.点击【滑动拼图验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()
# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()
# 4.等待验证码出来
time.sleep(5)
# 5.识别任务图片
target_word_list = []
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")
for tag in tag_list:
    ocr = ddddocr.DdddOcr(show_ad=False)
    word = ocr.classification(tag.screenshot_as_png)
    target_word_list.append(word)
print("要识别的文字:", target_word_list)
# 6.背景图片
bg_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_bg'
)
content = bg_tag.screenshot_as_png
# bg_tag.screenshot("bg.png")
# 7.识别背景中的所有文字并获取坐标
res = requests.post(
    url='http://upload.chaojiying.net/Upload/Processing.php',
    data={
        'user': "deng",
        'pass2': md5("自己密码".encode('utf-8')).hexdigest(),
        'codetype': "9501",
        'file_base64': base64.b64encode(content)
    },
    headers={
        'Connection': 'Keep-Alive',
        'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
    }
)
res_dict = res.json()
bg_word_dict = {}
for item in res_dict["pic_str"].split("|"):
    word, x, y = item.split(",")
    bg_word_dict[word] = (x, y)
print(bg_word_dict)
# target_word_list = ['粉', '菜', '香']
# bg_word_dict = {'粉': ('10', '10'), '菜': ('50', '50'), '香': ('100', '93')}
# 8.点击
for word in target_word_list:
    time.sleep(2)
    group = bg_word_dict.get(word)
    if not group:
        continue
    x, y = group
    x = int(x) - int(bg_tag.size['width'] / 2)
    y = int(y) - int(bg_tag.size['height'] / 2)
    ActionChains(driver).move_to_element_with_offset(bg_tag, xoffset=x, yoffset=y).click().perform()
time.sleep(1000)
driver.close()

5.图片验证码

在很多登录、注册、频繁操作等行为时,一般都会加入验证码的功能。

如果想要基于代码实现某些功能,就必须实现:自动识别验证码,然后再做其他功能。

6.识别

基于python的模块 ddddocr 可以实现对图片验证码的识别。

pip3.11 install ddddocr==1.4.9  -i https://mirrors.aliyun.com/pypi/simple/
pip3.11 install Pillow==9.5.0
pip install ddddocr==1.4.9  -i https://mirrors.aliyun.com/pypi/simple/
pip install Pillow==9.5.0

6.1 本地识别

import ddddocr
ocr = ddddocr.DdddOcr(show_ad=False)
with open("img/v1.jpg", mode='rb') as f:
    body = f.read()
code = ocr.classification(body)
print(code)

6.2 在线识别

也可以直接请求获取图片,然后直接识别:

import ddddocr
import requests
res = requests.get(url="https://console.zbox.filez.com/captcha/create/reg?_t=1701511836608")
ocr = ddddocr.DdddOcr(show_ad=False)
code = ocr.classification(res.content)
print(code)
import ddddocr
import requests
res = requests.get(
    url=f"https://api.ruanwen.la/api/auth/captcha?captcha_token=n5A6VXIsMiI4MTKoco0VigkZbByJbDahhRHGNJmS"
)
ocr = ddddocr.DdddOcr(show_ad=False)
code = ocr.classification(res.content)
print(code)

6.3 base64

有些平台的图片是以base64编码形式存在,需要处理下在识别。

import base64
import ddddocr
content = base64.b64decode("ivbORw0KGgoAAAANSUhEUgAAAGQAAAAoCAYAAAAIeF9DAAAHGElEQVR4Xu2a2VNTZxTAHZ/62of+BX3rdPrUmaq1da3WQWur1mqntrQWLe7UkUoQlEWFqFdzZN8hUBWKQUVpQDCyvueltVWIIiAEZHWBAEk4zffZe+bmS+6SEEzE/GbOkHvPuXeY85t7vyWZBV48ilnsCS/uxSvEw3hthJydXWITnsiMFyLWfLGcu5jRQuQ2W27dy8ArBOTXvQxmrBBHm+xo/XQhKkTffRu0NSfgt8KvISttGaQlfQyFOWtBXboDbt7Ig6HBdvYSj6C7awDC3kqGg4oC8N0YC6uWhcPCOUHgszQMtvudgsK8Gnj2dNTqGmeErH47Z8rBYlfI6MgAXLqwH5Lj50iGJzL//UDJwp1pBDTfasNrnBEyHdgIef6sF1R5X9o0Xig8Ebb5QrF8QajlLTDoMTIIVkLMZiOcKfrWquGXLyqgo70BDKNDNG8wDFleCTehsS4JivK/4l/uMWxco4T4WDUo30yH+zo9PH0yavn/x+nnuBg1LPhgP0qJjjzjuUJuNGWiiJSEedByt4KffiWxt9bIz65GISveO2CVczcoxGQah+y05SikqT6ZX/fKw4khkfNGEQpZNDeILXUrKKT13mWUkZmyBIxGA7/O5XT2PoL0c9kQcPIX+D5yK2w/vgcis6Oh5qYWJicnac2msM0YrmRw4BkK+cwyA3OEuLh4CApS0GhoaGTTNtTXN2B9fHwCm7YBhdRWR6GQK5rD/BqXU9FQCb4RflYN50d0fgwYxsemTUjJ6ToUEh6iYtOi1NXVY4MTEhLZtA2khquvr69n0zagEP5gfu/uBXruga4aykr8ISv1E0g/tRBUueug+o8I6NH/hTdwFO3tOhsB9iK5NN2lQsbHjZbJSR9kplbC4nkKKsNnySHoejTAlooyOjoKisAXDSYRN2cvW4Lo9XqsCwkJpddKgUJyM3xQSH9fC9RUHbWabbFBnigy63KEEcMIbI3agU0mrynN9WoYfDoIJrOJ/iXH5DwryFnYqS4XP26Kg86OPrZcklPvBIBKVYSNVqvL6Tl7qNVqrCsqKmbTdkEhaUkfYbOv1cbaCLAXNVVR/HtJQl5VXIO3Ru+E3sHHbAmFnCf56RKyb3cmPLjfw5bKgjS/tVWHjY6IiISkd22FmEwmmuPqdDodW2IXFJKaOB8bnZr4IRQXbITWlst01U6ehJGRfnpM1h58KY68vo4VxGKD1doXr0UhSH66hHCx/+dsePJkhL1EkiSLlJDdQdjs5mbbHjQ3N2NeqTyGExUpUAgZJ7gmny32BeOE/ffdhOX8adUmrK2qlD9L2RWzFxvc3adn01Z09XW7RAiH0WiCx73DoKm8DVt8E1DK+tVRTknRaDTY8MzMLDZNz3F5jaaKTQuCQgpy1mCTH3U08Wts6LSs3Lnawty1bFoQMr3lGjxhnGDTVpC8K4XwMZvNELwvF6XEnTjHlkgyPDwMCkUwbTj5S47l5KRAIefL9mCThZ4ODpLnasnsSy6eIoTQ/vAxClm36iibloXQUyD19IiBQhquJTgnJHkRmxbEna8slgnLNJgT4uxq3d44QYJ8FhtfxEAhXZ3XscmdHeIrULLZyNWq8tazaUHcMagL0XKvC4WQ70ucwXYmdZ/OprhjkiM1joBCJifNkJe5kjaZDuoCWyfsoO7I1Ncd0157jI1NwC7/FBQSGJDFlsiGv9YoLi6m6w3uuLy8nC2XxGq395+/S7HRZNqra6m0rC4HLYOgif4lx8X5G7AmOX4uDPTLm18T7C0Mq65fsSwIh/5fGA7R46ksDDd8oYSTx89BnfZfut1O9q1MJjPdfm970EO3Tcj2PH/6e7XmDnsb2bCrcRLcsV7v+FrHSgh5SviDu1RUrAyB1tlX+beQRO7WSUppBn7+LtyPvY0g/EbLicOH5K2gxeDvV3GRmJjElsnCSgiBDNgV5wNtms8P8l3Jn41pluoXix0ixRExcjYXh58/weOflLvYWwjCNlwoyECennzJ8vTLW7CJQXZ9WSGNjeLjsBA2Qjja27RQeTEYcsJW0G2VjJTF9McO2toYwR83OCKFbL+nlWVBwK+BdDq87Zj19jvJc0ICE4PZywUhP3BQ/94E4QdU8MM3J+HzFZH0Bw5L5wfDGp8jsHdnBuRlVdNFoqswGAwQGnoQZZDPY2NjbJksBIUQHGkwhzPX2KPkShkKSTqbwqZnLIJCptLYqVxLaNd3gN/RbSik9paWLZmxuEVIcMohKL92EVo6dNA/PABGk5F+IdXW/RBOV5XA5iP+KMNfuRvGJ8bZW8xY3CKEHcTFouGO+L7aTMNjhWw+7P9avao4BIUQpBprDznXtPd0wJmqUjiSo4R98Qq6WPSN2EIXhBFZUXRAJ9Pe1xFRIQQ5DeZwpNaLfSSFEEijxZotlfciH1lCOLjGs+HFdTgkxMv08x9BPe61Ol73uQAAAABJRU5ErkJggg==")
# with open('x.png', mode='wb') as f:
#     f.write(content)
ocr = ddddocr.DdddOcr(show_ad=False)
code = ocr.classification(content)
print(code)

7.案例:x文街

https://i.ruanwen.la/

import requests
import ddddocr
# 获得图片验证码地址
res = requests.post(url="https://api.ruanwen.la/api/auth/captcha/generate")
res_dict = res.json()
captcha_token = res_dict['data']['captcha_token']
captcha_url = res_dict['data']['src']
# 访问并获取图片验证码
res = requests.get(captcha_url)
# 识别验证码
ocr = ddddocr.DdddOcr(show_ad=False)
code = ocr.classification(res.content)
print(code)
# 登录认证
res = requests.post(
    url="https://api.ruanwen.la/api/auth/authenticate",
    json={
        "mobile": "手机号",
        "device": "pc",
        "password": "密码",
        "captcha_token": captcha_token,
        "captcha": code,
        "identity": "advertiser"
    }
)
print(res.json())
# {'success': True, 'message': '验证成功', 'data': {'token': 'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJodHRwczovL2FwaS5ydWFud2VuLmxhL2FwaS9hdXRoL2F1dGhlbnRpY2F0ZSIsImlhdCI6MTcwMTY1MzI2NywiZXhwIjoxNzA1MjUzMjY3LCJuYmYiOjE3MDE2NTMyNjcsImp0aSI6IjQ3bk05ejZyQ0JLV28wOEQiLCJzdWIiOjUzMzEyNTgsInBydiI6IjQxZGY4ODM0ZjFiOThmNzBlZmE2MGFhZWRlZjQyMzQxMzcwMDY5MGMifQ.XxFYMEot-DfjTUcuVuoCjcBqu3djvzJiTeJERaR95co'}, 'status': 200}

到此这篇关于Python爬虫selenium验证-中文识别点选+图片验证码案例的文章就介绍到这了,更多相关Python selenium验证内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153540

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数