Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)

本文主要是介绍Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)》本文介绍了如何使用Python和Selenium结合ddddocr库实现图片验证码的识别和点击功能,感兴趣的朋友一起看...

1.获取图片

import re
import time
import ddddocr
import requests
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains
service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)
# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')
# 2.点击【文字点选验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()
# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lphpambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()
time.sleep(5)
# 要识别的目标图片
target_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_ques_back'
)
target_tag.screenshot("target.png")
# 识别图片
bg_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_bg'
)
bg_tag.screenshot("bg.png")
time.sleep(2000)
driver.close()

2.目标识别

截图每个字符,并基于ddddocr识别。

import re
import time
import ddddocr
import requests
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains
service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)
# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')
# 2.点击【滑动拼图验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()
# 3.点击开始验证
tag = 编程WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()
# 4.等待验证码出来
time.sleep(5)
# 5.识别任务图片
target_word_list = []
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")
for tag in tag_list:
    ocr = ddddocr.DdddOcr(show_ad=False)
    word = ocr.classification(tag.screenshot_as_png)
    target_word_list.append(word)
print("要识别的文字:", target_word_list)
time.sleep(2000)
driver.close()

3.背景坐标识别

3.1 ddddocr

能识别,但是发现默认识别率有点低,想要提升识别率,可以搭建Pytorch环境对模型进行训练,参考:https://github.com/sml2h3/dddd_trainer

import re
import time
import ddddocr
import requests
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains
from PIL import Image, ImageDraw
from io import BytesIO
service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)
# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')
# 2.点击【滑动拼图验证】
tRqmIHFag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()
# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()
# 4.等待验证码出来
time.sleep(5)
# 5.识别任务图片
target_word_list = []
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")
for tag in tag_list:
    ocr = ddddocr.DdddOcr(show_ad=False)
    word = ocr.classification(tag.screenshot_as_png)
    target_word_list.append(word)
print("要识别的文字:", target_word_list)
# 6.背景图片
bg_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_bg'
)
content = bg_tag.screenshot_as_png
# 7.识别背景中的所有文字并获取坐标
ocr = ddddocr.DdddOcr(show_ad=False, det=True)
poses = ocr.detection(content) # [(x1, y1, x2, y2), (x1, y1, x2, y2), x1, y1, x2, y2]
# 8.循环坐标中的每个文字并识别
bg_word_dict = {}
img = Image.open(BytesIO(content))
for box in poses:
    x1, y1, x2, y2 = box
    # 根据坐标获取每个文字的图片
    corp = img.crop(box)
    img_byte = BytesIO()
    corp.save(img_byte, 'png')
    # 识别文字
    ocr2 = ddddocr.DdddOcr(show_ad=False)
    word = ocr2.classification(img_byte.getvalue())  # 识别率低
    # 获取每个字的坐标  {"鸭":}
    bg_word_dict[word] = [int((x1 + x2) / 2), int((y1 + y2) / 2)]
print(bg_word_dict)
time.sleep(1000)
driver.close()

3.2 打码平台

https://www.chaojiying.com/

imporRqmIHFt base64
import requests
from hashlib import md5
file_bytes = open('5.jpg', 'rb').read()
res = requests.post(
    url='http://upload.chaojiying.net/Upload/Processing.php',
    data={
        'user': "deng",
        'pass2': md5("密码".encode('utf-8')).hexdigest(),
        'codetype': "9501",
        'file_base64': base64.b64encode(file_bytes)
    },
    headers={
        'Connection': 'Keep-Alive',
        'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
    }
)
res_dict = res.json()
print(res_dict)
# {'err_no': 0, 'err_str': 'OK', 'pic_id': '1234612060701120002', 'pic_str': '的,86,73|粉,111,38|菜,40,49|香,198,101', 'md5': 'faac71fc832b2ead01ffb4e813f3be60'}

结合极验案例截图+识别:

import re
import time
import ddddocr
import requests
import base64
import requests
from hashlib import md5
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains
from PIL import Image, ImageDraw
from io import BytesIO
service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)
# 1.打开首页
driver.get('httpswww.chinasem.cn://www.geetest.com/adaptive-captcha-demo')
# 2.点击【滑动拼图验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()
# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()
# 4.等待验证码出来
time.sleep(5)
# 5.识别任务图片
target_word_list = []
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")
for tag in tag_list:
    ocr = ddddocr.DdddOcr(show_ad=False)
    word = ocr.classification(tag.screenshot_as_png)
    target_word_list.append(word)
print("要识别的文字:", target_word_list)
# 6.背景图片
bg_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_bg'
)
content = bg_tag.screenshot_as_png
bg_tag.screenshot("bg.png")
# 7.识别背景中的所有文字并获取坐标
res = requests.post(
    url='http://upload.chaojiying.net/Upload/Processing.php',
    data={
        'user': "deng",
        'pass2': md5("密码".encode('utf-8')).hexdigest(),
        'codetype': "9501",
        'file_base64': base64.b64encode(content)
    },
    headers={
        'Connection': 'Keep-Alive',
        'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
    }
)
res_dict = res.json()
print(res_dict)
# 8.每个字的坐标  {"鸭":(196,85), ...}    target_word_list = ["花","鸭","字"]
bg_word_dict = {}
for item in res_dict["pic_str"].split("|"):
    word, x, y = item.split(",")
    bg_word_dict[word] = (x, y)
print(bg_word_dict)
time.sleep(1000)
driver.close()

4.坐标点击

根据坐标,在验证码上进行点击。

ActionChains(driver).move_to_element_with_offset(标签对象, xoffset=x, yoffset=y).click().perform()
import re
import time
import ddddocr
import requests
import base64
import requests
from hashlib import md5
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.wait import WebDriverWait
from selenium.webdriver import ActionChains
from PIL import Image, ImageDraw
from io import BytesIO
service = Service("driver/chromedriver.exe")
driver = webdriver.Chrome(service=service)
# 1.打开首页
driver.get('https://www.geetest.com/adaptive-captcha-demo')
# 2.点击【滑动拼图验证】
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.XPATH,
    '//*[@id="gt-showZh-mobile"]/div/section/div/div[2]/div[1]/div[2]/div[3]/div[4]'
))
tag.click()
# 3.点击开始验证
tag = WebDriverWait(driver, 30, 0.5).until(lambda dv: dv.find_element(
    By.CLASS_NAME,
    'geetest_btn_click'
))
tag.click()
# 4.等待验证码出来
time.sleep(5)
# 5.识别任务图片
target_word_list = []
parent = driver.find_element(By.CLASS_NAME, 'geetest_ques_back')
tag_list = parent.find_elements(By.TAG_NAME, "img")
for tag in tag_list:
    ocr = ddddocr.DdddOcr(show_ad=False)
    word = ocr.classification(tag.screenshot_as_png)
    target_word_list.append(word)
print("要识别的文字:", target_word_list)
# 6.背景图片
bg_tag = driver.find_element(
    By.CLASS_NAME,
    'geetest_bg'
)
content = bg_tag.screenshot_as_png
# bg_tag.screenshot("bg.png")
# 7.识别背景中的所有文字并获取坐标
res = requests.post(
    url='http://upload.chaojiying.net/Upload/Processing.php',
    data={
        'user': "deng",
        'pass2': md5("自己密码".encode('utf-8')).hexdigest(),
        'codetype': "9501",
        'file_base64': base64.b64encode(content)
    },
    headers={
        'Connection': 'Keep-Alive',
        'User-Agent': 'Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 5.1; Trident/4.0)',
    }
)
res_dict = res.json()
bg_word_dict = {}
for item in res_dict["pic_str"].split("|"):
    word, x, y = item.split(",")
    bg_word_dict[word] = (x, y)
print(bg_word_dict)
# target_word_list = ['粉', '菜', '香']
# bg_word_dict = {'粉': ('10', '10'), '菜': ('50', '50'), '香': ('100', '93')}
# 8.点击
for word in target_word_list:
    time.sleep(2)
    group = bg_word_dict.get(word)
    if not group:
        continue
    x, y = group
    x = int(x) - int(bg_tag.size['width'] / 2)
    y = int(y) - int(bg_tag.size['height'] / 2)
    ActionChains(driver).move_to_element_with_offset(bg_tag, xoffset=x, yoffset=y).click().perform()
time.sleep(1000)
driver.close()

5.图片验证码

在很多登录、注册、频繁操作等行为时,一般都会加入验证码的功能。

如果想要基于代码实现某些功能,就必须实现:自动识别验证码,然后再做其他功能。

6.识别

基于python的模块 ddddocr 可以实现对图片验证码的识别。

pip3.11 install ddddocr==1.4.9  -i https://mirrors.aliyun.com/pypi/simple/
pip3.11 install Pillow==9.5.0
pip install ddddocr==1.4.9  -i https://mirrors.aliyun.com/pypi/simple/
pip install Pillow==9.5.0

6.1 本地识别

import ddddocr
ocr = ddddocr.DdddOcr(show_ad=False)
with open("img/v1.jpg", mode='rb') as f:
    body = f.read()
code = ocr.classification(body)
print(code)

6.2 在线识别

也可以直接请求获取图片,然后直接识别:

import ddddocr
import requests
res = requests.get(url="https://console.zbox.filez.com/captcha/create/reg?_t=1701511836608")
ocr = ddddocr.DdddOcr(show_ad=False)
code = ocr.classification(res.content)
print(code)
import ddddocr
import requests
res = requests.get(
    url=f"https://api.ruanwen.la/api/auth/captcha?captcha_token=n5A6VXIsMiI4MTKoco0VigkZbByJbDahhRHGNJmS"
)
ocr = ddddocr.DdddOcr(show_ad=False)
code = ocr.classification(res.content)
print(code)

6.3 base64

有些平台的图片是以base64编码形式存在,需要处理下在识别。

import base64
import ddddocr
content = base64.b64decode("ivbORw0KGgoAAAANSUhEUgAAAGQAAAAoCAYAAAAIeF9DAAAHGElEQVR4Xu2a2VNTZxTAHZ/62of+BX3rdPrUmaq1da3WQWur1mqntrQWLe7UkUoQlEWFqFdzZN8hUBWKQUVpQDCyvueltVWIIiAEZHWBAEk4zffZe+bmS+6SEEzE/GbOkHvPuXeY85t7vyWZBV48ilnsCS/uxSvEw3hthJydXWITnsiMFyLWfLGcu5jRQuQ2W27dy8ArBOTXvQxmrBBHm+xo/XQhKkTffRu0NSfgt8KvISttGaQlfQyFOWtBXboDbt7Ig6HBdvYSj6C7awDC3kqGg4oC8N0YC6uWhcPCOUHgszQMtvudgsK8Gnj2dNTqGmeErH47Z8rBYlfI6MgAXLqwH5Lj50iGJzL//UDJwp1pBDTfasNrnBEyHdgIef6sF1R5X9o0Xig8Ebb5QrF8QajlLTDoMTIIVkLMZiOcKfrWquGXLyqgo70BDKNDNG8wDFleCTehsS4JivK/4l/uMWxco4T4WDUo30yH+zo9PH0yavn/x+nnuBg1LPhgP0qJjjzjuUJuNGWiiJSEedByt4KffiWxt9bIz65GISveO2CVczcoxGQah+y05SikqT6ZX/fKw4khkfNGEQpZNDeILXUrKKT13mWUkZmyBIxGA7/O5XT2PoL0c9kQcPIX+D5yK2w/vgcis6Oh5qYWJicnac2msM0YrmRw4BkK+cwyA3OEuLh4CApS0GhoaGTTNtTXN2B9fHwCm7YBhdRWR6GQK5rD/BqXU9FQCb4RflYN50d0fgwYxsemTUjJ6ToUEh6iYtOi1NXVY4MTEhLZtA2khquvr69n0zagEP5gfu/uBXruga4aykr8ISv1E0g/tRBUueug+o8I6NH/hTdwFO3tOhsB9iK5NN2lQsbHjZbJSR9kplbC4nkKKsNnySHoejTAlooyOjoKisAXDSYRN2cvW4Lo9XqsCwkJpddKgUJyM3xQSH9fC9RUHbWabbFBnigy63KEEcMIbI3agU0mrynN9WoYfDoIJrOJ/iXH5DwryFnYqS4XP26Kg86OPrZcklPvBIBKVYSNVqvL6Tl7qNVqrCsqKmbTdkEhaUkfYbOv1cbaCLAXNVVR/HtJQl5VXIO3Ru+E3sHHbAmFnCf56RKyb3cmPLjfw5bKgjS/tVWHjY6IiISkd22FmEwmmuPqdDodW2IXFJKaOB8bnZr4IRQXbITWlst01U6ehJGRfnpM1h58KY68vo4VxGKD1doXr0UhSH66hHCx/+dsePJkhL1EkiSLlJDdQdjs5mbbHjQ3N2NeqTyGExUpUAgZJ7gmny32BeOE/ffdhOX8adUmrK2qlD9L2RWzFxvc3adn01Z09XW7RAiH0WiCx73DoKm8DVt8E1DK+tVRTknRaDTY8MzMLDZNz3F5jaaKTQuCQgpy1mCTH3U08Wts6LSs3Lnawty1bFoQMr3lGjxhnGDTVpC8K4XwMZvNELwvF6XEnTjHlkgyPDwMCkUwbTj5S47l5KRAIefL9mCThZ4ODpLnasnsSy6eIoTQ/vAxClm36iibloXQUyD19IiBQhquJTgnJHkRmxbEna8slgnLNJgT4uxq3d44QYJ8FhtfxEAhXZ3XscmdHeIrULLZyNWq8tazaUHcMagL0XKvC4WQ70ucwXYmdZ/OprhjkiM1joBCJifNkJe5kjaZDuoCWyfsoO7I1Ncd0157jI1NwC7/FBQSGJDFlsiGv9YoLi6m6w3uuLy8nC2XxGq395+/S7HRZNqra6m0rC4HLYOgif4lx8X5G7AmOX4uDPTLm18T7C0Mq65fsSwIh/5fGA7R46ksDDd8oYSTx89BnfZfut1O9q1MJjPdfm970EO3Tcj2PH/6e7XmDnsb2bCrcRLcsV7v+FrHSgh5SviDu1RUrAyB1tlX+beQRO7WSUppBn7+LtyPvY0g/EbLicOH5K2gxeDvV3GRmJjElsnCSgiBDNgV5wNtms8P8l3Jn41pluoXix0ixRExcjYXh58/weOflLvYWwjCNlwoyECennzJ8vTLW7CJQXZ9WSGNjeLjsBA2Qjja27RQeTEYcsJW0G2VjJTF9McO2toYwR83OCKFbL+nlWVBwK+BdDq87Zj19jvJc0ICE4PZywUhP3BQ/94E4QdU8MM3J+HzFZH0Bw5L5wfDGp8jsHdnBuRlVdNFoqswGAwQGnoQZZDPY2NjbJksBIUQHGkwhzPX2KPkShkKSTqbwqZnLIJCptLYqVxLaNd3gN/RbSik9paWLZmxuEVIcMohKL92EVo6dNA/PABGk5F+IdXW/RBOV5XA5iP+KMNfuRvGJ8bZW8xY3CKEHcTFouGO+L7aTMNjhWw+7P9avao4BIUQpBprDznXtPd0wJmqUjiSo4R98Qq6WPSN2EIXhBFZUXRAJ9Pe1xFRIQQ5DeZwpNaLfSSFEEijxZotlfciH1lCOLjGs+HFdTgkxMv08x9BPe61Ol73uQAAAABJRU5ErkJggg==")
# with open('x.png', mode='wb') as f:
#     f.write(content)
ocr = ddddocr.DdddOcr(show_ad=False)
code = ocr.classification(content)
print(code)

7.案例:x文街

https://i.ruanwen.la/

import requests
import ddddocr
# 获得图片验证码地址
res = requests.post(url="https://api.ruanwen.la/api/auth/captcha/generate")
res_dict = res.json()
captcha_token = res_dict['data']['captcha_token']
captcha_url = res_dict['data']['src']
# 访问并获取图片验证码
res = requests.get(captcha_url)
# 识别验证码
ocr = ddddocr.DdddOcr(show_ad=False)
code = ocr.classification(res.content)
print(code)
# 登录认证
res = requests.post(
    url="https://api.ruanwen.la/api/auth/authenticate",
    json={
        "mobile": "手机号",
        "device": "pc",
        "password": "密码",
        "captcha_token": captcha_token,
        "captcha": code,
        "identity": "advertiser"
    }
)
print(res.json())
# {'success': True, 'message': '验证成功', 'data': {'token': 'eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJodHRwczovL2FwaS5ydWFud2VuLmxhL2FwaS9hdXRoL2F1dGhlbnRpY2F0ZSIsImlhdCI6MTcwMTY1MzI2NywiZXhwIjoxNzA1MjUzMjY3LCJuYmYiOjE3MDE2NTMyNjcsImp0aSI6IjQ3bk05ejZyQ0JLV28wOEQiLCJzdWIiOjUzMzEyNTgsInBydiI6IjQxZGY4ODM0ZjFiOThmNzBlZmE2MGFhZWRlZjQyMzQxMzcwMDY5MGMifQ.XxFYMEot-DfjTUcuVuoCjcBqu3djvzJiTeJERaR95co'}, 'status': 200}

到此这篇关于Python爬虫selenium验证-中文识别点选+图片验证码案例的文章就介绍到这了,更多相关Python selenium验证内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Python爬虫selenium验证之中文识别点选+图片验证码案例(最新推荐)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153540

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

使用Python和Pyecharts创建交互式地图

《使用Python和Pyecharts创建交互式地图》在数据可视化领域,创建交互式地图是一种强大的方式,可以使受众能够以引人入胜且信息丰富的方式探索地理数据,下面我们看看如何使用Python和Pyec... 目录简介Pyecharts 简介创建上海地图代码说明运行结果总结简介在数据可视化领域,创建交互式地

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too

使用Python实现矢量路径的压缩、解压与可视化

《使用Python实现矢量路径的压缩、解压与可视化》在图形设计和Web开发中,矢量路径数据的高效存储与传输至关重要,本文将通过一个Python示例,展示如何将复杂的矢量路径命令序列压缩为JSON格式,... 目录引言核心功能概述1. 路径命令解析2. 路径数据压缩3. 路径数据解压4. 可视化代码实现详解1