Pytorch微调BERT实现命名实体识别

2025-03-20 13:50

本文主要是介绍Pytorch微调BERT实现命名实体识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《Pytorch微调BERT实现命名实体识别》命名实体识别(NER)是自然语言处理(NLP)中的一项关键任务,它涉及识别和分类文本中的关键实体,BERT是一种强大的语言表示模型,在各种NLP任务中显著...

环境准备

在继续之前,确保你已经安装了PyTorch, Transformers by hugs Face和其他必要的python库:

pip install torch transformers datasets

加载预训练BERT模型

首先导入所需的模块并加载预训练的BERT模型。我们使用“bert-base-case”模型作为起点:

from transformers import BertTokenizer, BertForTokenClassification
import torch

# Load pre-trained model tokenizer (vocabulary)
tokenizer = BertTokenizer.from_pretrained('bert-base-cased')

# Load pre-trained model for token classification
model = BertForTokenClassification.from_pretrained('bert-base-cased', num_labels=9)

这里,num_labels表示我们希望分类的实体类型的数量。对于简单的NER任务,这可能包括PERSON、ORGANIZATION、LOCATION等标签。

准备数据集

我们将使用hug Face数据集库来加载数据集。我们将用‘conll2003’数据集来演示这一点:

from datasets import load_dataset

dataset = load_dataset("conll2003")

CoNLL-2003 数据集包含单词、词性标记、句法块标记和命名实体标记。对于NER任务,我们感兴趣的是“NER”标签。它是经典的 英文命名实体识别(Named Entity Recognition, NER) 数据集。以下是详细介绍:

1. 数据集背景

  • 全称: Conference on Neural Information Processing Systems (CoNLL) 2003 Task
  • 领域: 自然语言处理(NLP)
  • 任务: 命名实体识别(NER)
  • 语言: 英文(English)
  • 主办方: CoNLL 会议(Hugging Face js的 load_dataset 已将其整合到平台)

2. 核心内容

标注实体类型

数据集中定义了以下 js4 种实体类型:

  • PER(人名,如 “John Smith”)
  • ORG(组织机构,如 “Google”)
  • LOC(地理位置,如 “New York”)
  • DATE(日期,如 “2023-10-05”)

数据格式

  • 结构: 每条数据是一个句子,按空格分割的单词列表,每个单词附带对应的标签。

  • 示例:

[
  {"word": "John", "label": "PER"},
  {"word": "works", "label": "O"},
  {"word": "at", "label": "O"},
  {"word": "Google", "label": "ORG"},
  ...
]
  • 列名text(句子原文)、words(分词后的单词列表)、labels(实体标签)。

数据集划分

  • 训练集: ~14,000 句子
  • 验证集: ~3,00http://www.chinasem.cn0 句子
  • 测试集: ~3,000 句子

3. 应用场景

  • 训练 NER 模型: 如 RNN、LSTM、Transformer(BERT 等)。
  • 评估模型性能: 官方提供了基准结果(如 F1 分数),可用于对比模型效果。
  • 研究 NLP 任务: 分析实体识别的难点(如歧义、复合实体)。

注意事项

  • 标注标准: 标签为 O 表示非实体,其他为具体实体类型。
  • 数据规模: 相比现代数据集(如 OntoNotes),句子和单词数量较小,适合快速验证模型。
  • 扩展性: 可与http://www.chinasem.cn其他 NER 数据集(如 conll2000nerdb)结合使用以提升模型泛化能力。

标记与对齐

在通过 BERT 处理数据之前,正确地对其进行标记并管理词块标记化至关重要,这包括正确对齐实体标签。以下是我们在数据集上进行标记化和对齐的方式:

def tokenize_and_align_labels(examples):
    tokenized_inputs = 
    tokenizer(examples["tokens"], 
              truncation=True, 
     China编程         padding="max_length", 
              is_split_into_words=True)
    labels = []
    for i, label in enumerate(examples["ner"]):
        word_ids = tokenized_inputs.word_ids(BATch_index=i)
        previous_word_idx = None
        label_ids = []
        for word_idx in word_ids:
            if word_idx is None:
                label_ids.append(-100)
            elif word_idx != previous_word_idx:
                label_ids.append(label[word_idx])
            else:
                label_ids.append(-100)
            previous_word_idx = word_idx
        labels.append(label_ids)
    tokenized_inputs["labels"] = labels
    return tokenized_inputs

# Apply tokenizer
encoded_dataset = dataset.map(tokenize_and_align_labels, batched=True)

这段代码的作用是对 命名实体识别(NER)数据进行分词(Tokenization)和标签对齐(Label Alignment),使其适配预训练模型(如 BERT、RoBERTa 等)的输入格式。以下是逐行解释和核心逻辑分析:

  • 输入 examples 包含两个关键字段:
    • "tokens": 原始句子的单词列表(如 [["John", "works", "at"], ...])。
    • "ner": 对应的实体标签列表(如 [["PER", "O", "O"], ...])。
  • 输出:
    • tokenized_inputs: 分词后的模型输入(包含 input_idsattention_mask 等)。
    • labels: 与模型输出对齐的标签(将原始标签映射到分词后的子词位置)。

-100 标签用于在训练期间屏蔽标签,并且对应于在损失计算过程中必须跳过的标记。

微调 BERT

让我们使用 PyTorch 框架设置数据加载器,并定义训练和评估函数。此过程涉及配置优化器、设置学习率以及建立微调循环:

from torch.utils.data import DataLoader
from transformers import AdamW

train_dataset = encoded_dataset["train"]
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=16)

optimizer = AdamW(model.parameters(), lr=5e-5)

model.train()
for epoch in range(3):  # loop over the dataset multiple times
    for batch in train_dataloader:
        inputs = {k: v.to(device) for k, v in batch.items() if k != "labels"}
        labels = batch["labels"].to(device)
        outputs = model(**inputs, labels=labels)
        loss = outputs.loss
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

训练通常需要对 GPU 利用率给予特别关注。如果具备使用 GPU 的条件,请确保您的模型、输入数据以及优化器都已迁移到 GPU 上。

最后总结

在 PyTorch 中对 BERT 进行微调以用于命名实体识别涉及一系列步骤,从加载预训练的 BERT 分词器和模型开始,到准备数据集、训练,最后使用训练好的模型来识别命名实体。有了合适的数据集和适当的模型调整,这种技术使你能够利用最先进的 NLP 架构应用于各种实际场景。

以上就是Pytorch微调BERT实现命名实体识别的详细内容,更多关于Pytorch BERT命名实体识别的资料请关注编程China编程(www.chinasem.cn)其它相关文章!

这篇关于Pytorch微调BERT实现命名实体识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153849

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too