OpenCV(四)—— 车牌号识别

2024-05-04 08:44
文章标签 opencv 车牌号 识别

本文主要是介绍OpenCV(四)—— 车牌号识别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本节是车牌识别的最后一部分 —— 车牌字符识别,从一个完整的车牌图片到识别出车牌上的字符大致需要如下几步:

  • 预处理:将车牌图片灰度化、二值化,并去除识别时的干扰因素,比如车牌铆钉
  • 字符分割:将整个车牌图片按照每个字符分割成 7 个单独的字符图片保存到集合中
  • 字符识别:使用经过训练的数字、英文字符、中文字符的特征集合对字符图片进行识别,得到最终的车牌号

下面详解以上步骤。

1、预处理

图像识别的预处理工作一般都是灰度化、二值化这些图像“降噪”处理,当然我们这里还有一个特殊的处理,就是要祛除车牌图像上的铆钉,它是对识别准确度影响较大的一个因素。

1.1 AnnPredictor 预处理

新建一个类 AnnPredictor 用于进行字符识别:

#ifndef ANNPREDICTOR_H
#define ANNPREDICTOR_H#define ANNPREDICTOR_DEBUG#include <opencv2/opencv.hpp>
#include <string>
#include <opencv2/ml.hpp>using namespace std;
using namespace cv;
using namespace ml;class AnnPredictor {
public:AnnPredictor(const char* ann_model, const char* ann_zh_model);~AnnPredictor();// 字符识别string predict(Mat plate);private:// 用于数字和英文字符识别Ptr<ANN_MLP> ann;// 用于中文字符识别Ptr<ANN_MLP> ann_zh;// ANN 的 HOG 特征HOGDescriptor* annHog = nullptr;// 与 SvmPredictor 中的函数相同void getHOGFeatures(HOGDescriptor* svmHog, Mat src, Mat& dst);// 去除铆钉bool clearRivet(Mat &plate);// 验证单个字符尺寸bool verifyCharSize(Mat src);// 获取城市汉字字符在排序后的矩形集合中的索引int getCityIndex(vector<Rect> rects);// 获取中文字符所在的矩形void getChineseRect(Rect cityRect, Rect& chineseRect);// 识别车牌字符保存到 str_plate 中void predict(vector<Mat> plateCharMats, string& str_plate);// 汉字字符集合static string ZHCHARS[];// 数字与英文字符集合static char CHARS[];
};#endif // !ANNPREDICTOR_H

这样在 LicensePlateRecognizer 中调用 predict() 即可获取到车牌字符串:

LicensePlateRecognizer::LicensePlateRecognizer(const char* svm_model, const char* ann_model, const char* ann_zh_model)
{...annPredictor = new AnnPredictor(ann_model, ann_zh_model);
}LicensePlateRecognizer::~LicensePlateRecognizer()
{...if (annPredictor){delete annPredictor;annPredictor = nullptr;}
}string LicensePlateRecognizer::recognize(Mat src)
{// 1.车牌定位,使用 Sobel 算法定位// 2.精选车牌定位得到的候选车牌图,找到最有可能是车牌的图...// 3.对车牌图进行字符识别string str_plate = annPredictor->predict(plate);plate.release();return str_plate;
}

predict() 内,先进行预处理,像灰度化和二值化这些操作前面已出现过多次就不再赘述了:

string AnnPredictor::predict(Mat plate)
{// 1.预处理 // 1.1 灰度化Mat gray;cvtColor(plate, gray, COLOR_BGR2GRAY);// 1.2 二值化(非黑即白,对比更强烈)Mat shold;threshold(gray, shold, 0, 255, THRESH_OTSU + THRESH_BINARY);// 1.3 去铆钉if (!clearRivet(shold)){return string("未识别到车牌");}...
}

主要说一下如何去掉车牌图片上的铆钉。

1.2 去掉车牌上的铆钉

二值化后的图片仍能看到车牌上的铆钉,这是影响识别准确程度的一个干扰因素:

去柳钉前

因此我们要去掉它,去掉后的效果:

去柳钉后

去除铆钉的思路是,对车牌图像进行逐行扫描,如果这一行是铆钉,那么颜色跳变的次数应该为 4 次,远远少于正常字符的颜色跳变次数:

2024-4-4.去柳钉前颜色跳变示意图1

上面红线是扫描到铆钉的行,先是黑色,扫描到铆钉变为白色,离开铆钉再变为黑色,第二颗铆钉重复上述过程,因此有 4 次黑白之间的颜色跳变。而第二条红线扫描到正常字符,跳变次数远远大于 4,我们就用这个思路去除铆钉:

/**
* 通过一行的颜色跳变次数判断是否扫描到了铆钉,
* 一行最小跳变次数为 12,最大为 12 + 8 * 6 = 60。
* 如果该行是铆钉行,则将该行所有像素都涂成黑色(像素值为 0)
*/
bool AnnPredictor::clearRivet(Mat &plate)
{// 1.逐行扫描统计颜色跳变次数保存到集合中int minChangeCount = 12;vector<int> changeCounts;int changeCount;for (int i = 0; i < plate.rows; i++){for (int j = 0; j < plate.cols - 1; j++){int pixel_front = plate.at<char>(i, j);int pixel_back = plate.at<char>(i, j + 1);if (pixel_front != pixel_back){changeCount++;}}changeCounts.push_back(changeCount);changeCount = 0;}// 2.计算字符高度,即满足像素跳变次数的行数int charHeight = 0;for (int i = 0; i < plate.rows; i++){if (changeCounts[i] >= 12 && changeCounts[i] <= 60){charHeight++;}}// 3.判断字符高度 & 面积占整个车牌的高度 & 面积的百分比,排除不符合条件的情况// 3.1 高度占比小于 0.4 则认为无法识别float heightPercent = float(charHeight) / plate.rows;if (heightPercent <= 0.4){return false;}// 3.2 面积占比小于 0.15 或大于 0.5 则认为无法识别float plate_area = plate.rows * plate.cols;// countNonZero 返回非 0 像素点(即白色)个数,或者自己遍历找像素点为 255 的个数也可float areaPercent = countNonZero(plate) * 1.0 / plate_area;// 小于 0.15 就是蓝背景白字车牌确实达不到识别标准,大于 0.5 是因为// 黄背景黑子二值化会把背景转化为白色,由于前面的处理逻辑只能处理// 蓝背景车牌,所以黄色车牌的情况也直接认为不可识别if (areaPercent <= 0.15 || areaPercent >= 0.5){return false;}// 4.将小于最小颜色跳变次数的行全部涂成黑色for (int i = 0; i < plate.rows; i++){if (changeCounts[i] < minChangeCount){for (int j = 0; j < plate.cols; j++){plate.at<char>(i, j) = 0;}}}return true;
}

2、字符分割

接下来开始分割字符,主要可以分为三部分:

  1. 找到各个字符的轮廓,并生成轮廓对应的图片
  2. 对汉字字符的轮廓图片进行特殊处理
  3. 将所有 7 个字符的轮廓图片保存到集合中为字符识别做准备

下面详解。

2.1 生成字符轮廓图片

先通过寻找轮廓的函数 findContours() 找到轮廓,生成轮廓矩形集合 vec_ann_rects:

string AnnPredictor::predict(Mat plate)
{// 1.预处理 ...// 2.字符分割// 2.1 找轮廓// vector<Point>是点的集合,可以连成线,线的集合就是轮廓了vector<vector<Point>> contours;findContours(shold, // 输入的图像contours, // 轮廓,接收结果RETR_EXTERNAL, // 轮廓检索模式:外轮廓CHAIN_APPROX_NONE // 轮廓近似算法模式:不进行轮廓近似,保留所有的轮廓点);vector<Rect> vec_ann_rects;// 在原图上克隆一个用来画矩形Mat src_clone = plate.clone();for each (vector<Point> points in contours) {Rect rect = boundingRect(points);Mat rectMat = shold(rect);// rectangle(src_clone, rect, Scalar(0, 0, 255));// 尺寸判断,符合规格的放入 vec_sobel_rects 集合中if (verifyCharSize(rectMat)) {vec_ann_rects.push_back(rect);}}...
}

遍历 vec_ann_rects 生成轮廓矩形并生成与矩形对应的图片,这就是分割的字符图片。当然,在将它们存入集合前你需要过滤一下,因为不是所有轮廓都刚好是一个完整的字符。比如“渝”字,由于汉字相比于英文字符和数字,结构复杂,因此无法识别为整个字,而是识别出“渝”字中点或者某个局部部分:

2024-4-8.字符找轮廓效果图2

因为我们导出的车牌宽度只有 136 像素,所以放大后并不清晰,但是能看出来,英文字母和数字的轮廓只有一个,而“渝”的轮廓有多个。面对这种情况,我们先用 verifyCharSize() 进行尺寸校验,将不符合规格的字符图片过滤掉:

bool AnnPredictor::verifyCharSize(Mat src)
{// 最理想情况 车牌字符的标准宽高比float aspect = 45.0f / 90.0f;// 当前获得矩形的真实宽高比float realAspect = (float)src.cols / (float)src.rows;// 最小的字符高float minHeight = 10.0f;// 最大的字符高float maxHeight = 35.0f;// 1、判断高符合范围  2、宽、高比符合范围// 最大宽、高比 最小宽高比float error = 0.7f;float maxAspect = aspect + aspect * error;//0.85float minAspect = 0.05f;int plate_area = src.cols * src.rows;float areaPercent = countNonZero(src) * 1.0 / plate_area;if (areaPercent <= 0.8 && realAspect >= minAspect && realAspect <= maxAspect&& src.rows >= minHeight &&src.rows <= maxHeight) {return true;}return false;
}

汉字被识别为多个部分,无法通过 verifyCharSize() 的校验,会被过滤掉。也就是说,这一步中,我们只获取了英文和数字图片,汉字图片暂时还未获取。

2.2 获取汉字轮廓

思路是,先定位到汉字后面表示城市的那一位英文字符,再向左侧推导获取汉字轮廓。

首先,根据图片的横坐标对 vec_ann_rects 集合内的字符图片进行从左至右的排序:

string AnnPredictor::predict(Mat plate)
{...// 2.2 对矩形轮廓从左至右排序sort(vec_ann_rects.begin(), vec_ann_rects.end(), [](const Rect& rect1, const Rect& rect2) {return rect1.x < rect2.x;});...
}

然后获取到表示城市字符的轮廓索引:

string AnnPredictor::predict(Mat plate)
{...// 2.3 获取城市字符轮廓的索引int cityIndex = getCityIndex(vec_ann_rects);...
}

getCityIndex() 获取城市字符索引的思路是:车牌上共有 7 个字符,那么城市字符位于第 2 位,该字符中间横坐标一定在车牌水平方向的 1/7 ~ 2/7 之间:

/**
* 寻找城市字符(7 位字符中的第 2 位)轮廓索引
*/
int AnnPredictor::getCityIndex(vector<Rect> rects)
{int cityIndex = 0;for (int i = 0; i < rects.size(); i++){Rect rect = rects[i];int midX = rect.x + rect.width / 2;// 如果字符水平方向中点坐标在整个车牌水平坐标的// 1/7 ~ 2/7 之间,就认为是目标索引。136 是我们// 训练车牌使用的素材的车牌宽度if (midX < 136 / 7 * 2 && midX > 136 / 7){cityIndex = i;break;}}return cityIndex;
}

获取城市字符索引后,可以根据其横坐标推断出汉字字符的轮廓:

string AnnPredictor::predict(Mat plate)
{...// 2.4 推导汉字字符的轮廓Rect chineseRect;getChineseRect(vec_ann_rects[cityIndex], chineseRect);...
}

getChineseRect() 会将推断出的矩形保存到 chineseRect 中:

/**
* 通过城市字符的矩形,确定汉字字符的矩形
*/
void AnnPredictor::getChineseRect(Rect cityRect, Rect& chineseRect)
{// 把宽度稍微扩大一点以包含完整的汉字字符// 还有一层理解,就是汉字与城市字符之间的空隙也要计算进去float width = cityRect.width * 1.15;// 城市轮廓矩形的横坐标int x = cityRect.x;// 用城市矩形的横坐标减去汉字宽度得到汉字矩形的横坐标int newX = x - width;chineseRect.x = newX > 0 ? newX : 0;chineseRect.y = cityRect.y;chineseRect.width = width;chineseRect.height = cityRect.height;
}

2.3 保存所有字符图片

最后将 7 个字符的图片保存到 plateCharMats 集合中等待字符识别:

string AnnPredictor::predict(Mat plate)
{...// 2.5 将字符图像保存到集合中// 先保存汉字字符图像vector<Mat> plateCharMats;plateCharMats.push_back(shold(chineseRect));// 再获取汉字之后的 6 个字符并保存int count = 6;if (vec_ann_rects.size() < 6){return string("未识别到车牌");}for (int i = cityIndex; i < vec_ann_rects.size() && count; i++, count--){plateCharMats.push_back(shold(vec_ann_rects[i]));}...
}

3、字符识别

3.1 识别过程

调用 predict() 传入字符图片集合 plateCharMats,识别的字符结果保存在 str_plate 中:

string AnnPredictor::predict(Mat plate)
{...// 3.字符识别string str_plate;predict(plateCharMats, str_plate);for (Mat m : plateCharMats) {m.release();}// 4.释放 Matgray.release();shold.release();src_clone.release();return str_plate;
}

predict() 内遍历 plateCharMats,提取 HOG 特征后对汉字和数字英文分开识别,注意 ZHCHARS 与 CHARS 内的字符顺序要和训练样本存放顺序相同:

string AnnPredictor::ZHCHARS[] = { "川", "鄂", "赣", "甘", "贵", "桂", "黑", "沪", "冀", "津", "京", "吉", "辽", "鲁", "蒙", "闽", "宁", "青", "琼", "陕", "苏", "晋", "皖", "湘", "新", "豫", "渝", "粤", "云", "藏", "浙" };
char AnnPredictor::CHARS[] = { '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z' };void AnnPredictor::predict(vector<Mat> plateCharMats, string& result)
{for (int i = 0; i < plateCharMats.size(); i++){Mat mat_plate_char = plateCharMats[i];// 提取 HOG 特征Mat features;getHOGFeatures(annHog, mat_plate_char, features);Mat sample = features.reshape(1, 1);Mat response;Point maxLoc;Point minLoc;if (i){// 字母和数字ann->predict(sample, response);minMaxLoc(response, 0, 0, &minLoc, &maxLoc);int index = maxLoc.x;result += CHARS[index];}else{// 汉字ann_zh->predict(sample, response);minMaxLoc(response, 0, 0, &minLoc, &maxLoc);int index = maxLoc.x;result += ZHCHARS[index];}}
}

至此代码结束,先来看一下效果:

2024-4-8.最终识别结果1

对于【渝G 83666】的识别结果为【渝G 80666】,错了一位,这与识别的算法,还有训练样本的数量都有关系。总的来说,Demo 提供了一种车牌识别的思路,但是准确度还是有限的。

3.2 样本制作

最后来说说样本是如何制作的。

识别车牌字符,需要所有字符训练的特征集合,即首位的汉字共 31 个字符、第二位英文字符 24 个(刨除 I 和 O 两个容易被误识别为 1 和 0)、以及后续位数中需要用到的 10 个数字。我们将训练样本分为两类:英文字符和数字的训练样本放入 ann 文件夹,汉字字符放入 ann_zh 文件夹。两个文件夹内都需要对字符进行编号:

  • ann 中 0 号文件夹是数字 0 的训练素材,1 号文件夹是数字 1 的训练素材,以此类推,总共是 10 + 24 = 24 个文件夹
  • ann_zh 中 1 号文件夹是“川”字的训练素材,2 号文件夹是“鄂”字的训练素材,共计 31 个文件夹

这些字符的编号顺序需要记录在一个额外的文档中,内容如下:

"川", "鄂", "赣", "甘", "贵", "桂", "黑", "沪", "冀", "津", "京", "吉", "辽", "鲁", "蒙", "闽", "宁", "青", "琼", "陕", "苏", "晋", "皖", "湘", "新", "豫", "渝", "粤", "云", "藏", "浙"
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'J', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'

训练后可以得到两个特征集合文件 ann.xml(数字和英文字符)和 ann_zh.xml(汉字字符),正是初始化 AnnPredictor 的 ann 和 ann_zh 所加载的文件。目录结构如下:

2024-4-8.车牌字符样本训练目录

这篇关于OpenCV(四)—— 车牌号识别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958798

相关文章

利用opencv与Socket实现树莓派获取摄像头视频和灰度重心发送到电脑

使用树莓派原装CSI摄像头录制视频并利用灰度重心法获取重心,将图像和重心数据通过Socket实时传输到电脑上 因为需要实现程序一启动便打开摄像头计算数据,同时启动Socket服务器等待客户端连接,所以利用C++11中的thread库通过多线程实现程序 树莓派-服务端 #include <iostream>#include <unistd.h>#include <cstring>#inc

树莓派4B安装opencv以及错误解决

欢迎访问我的博客:konosuba.xyz 更新于2020/4/27 更新:换了个树莓派4B,安装opencv的时候遇到了一些之前没碰到的问题,在这里记录一下 主要参考opencv官网文档和博客树莓派+Opencv(一)图像处理 树莓派4B上安装参考:树莓派4B 安装opencv完整教程基于python3(各种错误解决) 下载安装依赖项 sudo apt-get install b

几个人脸库对于面部动作识别的功能比较

经粗略研究,insightface只能识别面部特征点的位置,根据这些位置不能直接推出一个人是否在睡觉。 OpenFace 是一个高级的面部行为分析工具,它能够识别和分析多种面部动作单位(Facial Action Coding System, FACS),这些动作单位是根据面部肌肉活动定义的。每个动作单位(AU)代表了面部表情中的一个具体部分的变化。下面是一些动作单位的含义,以及它们在面部表达中

关于低版本Windows系统在SpringBoot项目中无法运行OpenCV的问题

文章目录 1 摘要2 异常信息3 解决OpenCV依赖问题3.1 Windows 7 安装 OpenCV 依赖3.2 Windows Server 2012 安装 OpenCV 依赖 4 推荐参考资料 1 摘要 曾经的典操作系统 Windows 7 ,在如今的 2024 年依旧占有一定的市场份额。在 SpringBoot 集成 OpenCV 的过程中也提到过操作系统版本过低会导

opencv中关于sift匹配

opencv提供一个knnMatch函数,可以获取两个图片sift特征点的最近匹配距离以及次近匹配距离。 BruteForceMatcher< L2<float> > matcher;vector<DMatch> good_matches;matcher.knnMatch(description2, description1, ratio_matches, 2); match函数的参数中位

开箱机选型“避坑”指南:风险识别与应对策略一网打尽

在现代化生产线上,开箱机作为关键设备之一,其选型过程的成功与否直接关系到生产效率与成本控制。然而,在选型过程中,往往会面临诸多风险,如何有效识别并应对这些风险,成为企业关注的焦点。星派将为您详细解析开箱机选型过程中的风险识别与应对策略。 一、开箱机选型过程中的常见风险 技术风险:不同品牌的开箱机在技术水平、性能参数等方面存在差异,选型时若未能充分了解产品特性,可能导致设备与实际需求不匹配,影响

【OpenCV 基础知识 4】分离图像通道

cvSplit()是openCV中的一个函数,它分别复制每个通道到多个单通道图像。 void cvSplit( const CvArr* src, CvArr* dst0, CvArr* dst1, CvArr* dst2, CvArr* dst3 );.cvSplit()函数将复制src的各个通道到图像dst0,dst1,dst2和dst3中。如果源图像少于4个通道的情况下,那么传递给cvSpl

【OpenCV C++】cvtColor将彩色图像转换为灰度图时,3个通道的灰度值是如何处理的? 三个通道是如何加权计算的?三个通道取平均得到灰度图吗?

文章目录 在OpenCV中,使用cv::cvtColor函数将彩色图像转换为灰度图时,3个通道的灰度值并不是简单地取平均值,而是通过加权平均的方法来计算的。 具体来说,灰度值是根据人眼对不同颜色敏感度的不同,使用加权公式计算得到的。 转换公式 通常使用的加权公式是: Gray=0.299×R+0.587×G+0.114×B 解释 R、G、B 分别代表红色、绿色和蓝色通道的

使用yolov8 训练coco 和自己的关键点识别数据集的参考

使用yolov8 训练关键点配置理解 1. coco-pose.yaml 修改关键参数kpt_shape: [17, 3]flip_idx: [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] 2. yolov8n-pose.yaml 修改kpt_shape3. 编写 train文件4.一个封装的推理代码 1. co

视觉识别应用的场景有哪些

1.视觉识别应用的场景有哪些 视觉识别应用的场景非常广泛,以下是一些常见的应用场景: 品牌与营销:视觉识别在品牌建设中起着至关重要的作用。它能帮助企业在市场上建立独特的品牌形象,并通过各种印刷品(如名片、信纸、宣传册、海报等)、网站设计、广告与营销以及包装设计等方式,确保品牌视觉的一致性,从而增强品牌的专业形象和认知度。智慧城市:在智慧城市建设中,AI视觉识别技术被广泛应用。通过对城市中的摄像