LeetCode 题目 94:五种算法递归|迭代|莫里斯|线索二叉树|栈的迭代二叉树 实现中序遍历

本文主要是介绍LeetCode 题目 94:五种算法递归|迭代|莫里斯|线索二叉树|栈的迭代二叉树 实现中序遍历,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文详细探讨了五种二叉树中序遍历算法,包括递归、迭代、莫里斯遍历、线索二叉树和栈的迭代,评估了它们的效率和实用性。


题目描述

给定一个二叉树的根节点 root,返回它的中序遍历。

输入格式
  • root:二叉树的根节点。
输出格式
  • 返回中序遍历结果的列表。

示例

示例 1
输入: root = [1,null,2,3]
输出: [1,3,2]

方法一:递归

解题步骤
  1. 递归遍历:先遍历左子树,然后访问根节点,最后遍历右子树。
完整的规范代码
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef inorderTraversal(root):"""递归实现二叉树的中序遍历:param root: TreeNode, 二叉树的根节点:return: List[int], 中序遍历的结果"""def helper(node, res):if node:helper(node.left, res)res.append(node.val)helper(node.right, res)result = []helper(root, result)return result# 示例调用
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)
print(inorderTraversal(root))  # 输出: [1,3,2]
算法分析
  • 时间复杂度:(O(n)),每个节点访问一次。
  • 空间复杂度:(O(h)),递归栈的深度,其中 (h) 是树的高度。

方法二:迭代

解题步骤
  1. 使用栈:利用栈来模拟递归过程,先深入访问左子树,再访问节点,最后处理右子树。
完整的规范代码
def inorderTraversal(root):"""迭代实现二叉树的中序遍历:param root: TreeNode, 二叉树的根节点:return: List[int], 中序遍历的结果"""stack, res = [], []current = rootwhile current or stack:while current:stack.append(current)current = current.leftcurrent = stack.pop()res.append(current.val)current = current.rightreturn res# 示例调用
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)
print(inorderTraversal(root))  # 输出: [1,3,2]
算法分析
  • 时间复杂度:(O(n)),每个节点访问一次。
  • 空间复杂度:(O(h)),栈的最大深度等于树的高度。

方法三:莫里斯遍历 (Morris Traversal)

解题步骤
  1. 线索二叉树:利用叶子节点中的空 right 指针指向中序遍历的后继节点,从而实现空间复杂度为 (O(1)) 的遍历。
完整的规范代码
def inorderTraversal(root):"""莫里斯遍历实现二叉树的中序遍历:param root: TreeNode, 二叉树的根节点:return: List[int], 中序遍历的结果"""res, current = [], rootwhile current:if current.left:# 找到左子树的最右节点pre = current.leftwhile pre.right and pre.right != current:pre = pre.rightif not pre.right:pre.right = currentcurrent = current.leftelse:pre.right = Noneres.append(current.val)current = current.rightelse:res.append(current.val)current = current.rightreturn res# 示例调用
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)
print(inorderTraversal(root))  # 输出: [1,3,2]
算法分析
  • 时间复杂度:(O(n)),尽管看似复杂,但每个节点最多被处理两次(一次连接前驱,一次断开前驱)。
  • 空间复杂度:(O(1)),不使用额外空间。

方法四:线索二叉树

解题步骤

线索二叉树是一种通过链接空的左指针指向节点的前驱,空的右指针指向节点的后继来增加遍历效率的方法。对于中序遍历,可以通过构建线索二叉树来无需额外空间和递归地完成遍历。

  1. 构建线索:在构建或遍历时,把空的左指针指向中序遍历的前驱,右指针指向后继。
  2. 遍历节点:从根节点开始,一直向左下走到最左,然后使用线索向右移动。
完整的规范代码
def inorderTraversal(root):"""使用线索二叉树的方法进行中序遍历:param root: TreeNode, 二叉树的根节点:return: List[int], 中序遍历的结果"""result = []current = rootwhile current:if current.left:pre = current.leftwhile pre.right and pre.right != current:pre = pre.rightif not pre.right:pre.right = current  # 建立线索current = current.leftcontinuepre.right = None  # 断开线索result.append(current.val)current = current.rightreturn result# 示例调用
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)
print(inorderTraversal(root))  # 输出: [1,3,2]
算法分析
  • 时间复杂度:(O(n)),每个节点被访问至多两次。
  • 空间复杂度:(O(1)),不使用额外空间,除了输出列表。

方法五:使用栈的非递归迭代

解题步骤

这种方法使用显式栈存储将要访问的节点,模拟递归过程。

  1. 使用栈:利用显式栈存储节点来模拟递归的调用栈。
  2. 处理节点:按照中序的顺序处理每个节点,即左-根-右。
完整的规范代码
def inorderTraversal(root):"""使用栈的迭代方法进行中序遍历:param root: TreeNode, 二叉树的根节点:return: List[int], 中序遍历的结果"""stack = []result = []current = rootwhile current or stack:while current:stack.append(current)current = current.leftcurrent = stack.pop()result.append(current.val)current = current.rightreturn result# 示例调用
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)
print(inorderTraversal(root))  # 输出: [1,3,2]
算法分析
  • 时间复杂度:(O(n)),每个节点被访问一次。
  • 空间复杂度:(O(h)),栈的最大深度等于树的高度。

下面是五种中序遍历二叉树算法的优劣势对比表,这有助于直观地了解每种方法的特点和适用场景:

方法时间复杂度空间复杂度优势劣势
递归(O(n))(O(h))简单直观;直接符合中序遍历定义。可能导致栈溢出;递归深度受树高限制。
迭代(O(n))(O(h))避免递归导致的栈溢出。实现较为复杂;需要手动维护栈。
莫里斯遍历(O(n))(O(1))不使用额外空间;适合内存限制严格的环境。修改树的结构(临时);实现复杂,难以掌握。
线索二叉树(O(n))(O(1))通过线索化减少空间使用,无栈无递归。需要修改树的结构,实现较复杂。
栈的迭代(O(n))(O(h))易于理解和实现;不修改树的结构。需要额外的存储空间模拟调用栈。

应用示例

  • 算法设计与数据结构教育:递归和迭代方法经常用于教学,展示基本的树遍历技术。
  • 计算机图形学:中序遍历可用于场景图管理,处理具有层次结构的图形对象。
  • 编译器构建:在抽象语法树(AST)的处理中,中序遍历可以用于生成输出代码或。

这篇关于LeetCode 题目 94:五种算法递归|迭代|莫里斯|线索二叉树|栈的迭代二叉树 实现中序遍历的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958702

相关文章

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

CSS实现元素撑满剩余空间的五种方法

《CSS实现元素撑满剩余空间的五种方法》在日常开发中,我们经常需要让某个元素占据容器的剩余空间,本文将介绍5种不同的方法来实现这个需求,并分析各种方法的优缺点,感兴趣的朋友一起看看吧... css实现元素撑满剩余空间的5种方法 在日常开发中,我们经常需要让某个元素占据容器的剩余空间。这是一个常见的布局需求

HTML5 getUserMedia API网页录音实现指南示例小结

《HTML5getUserMediaAPI网页录音实现指南示例小结》本教程将指导你如何利用这一API,结合WebAudioAPI,实现网页录音功能,从获取音频流到处理和保存录音,整个过程将逐步... 目录1. html5 getUserMedia API简介1.1 API概念与历史1.2 功能与优势1.3

Java实现删除文件中的指定内容

《Java实现删除文件中的指定内容》在日常开发中,经常需要对文本文件进行批量处理,其中,删除文件中指定内容是最常见的需求之一,下面我们就来看看如何使用java实现删除文件中的指定内容吧... 目录1. 项目背景详细介绍2. 项目需求详细介绍2.1 功能需求2.2 非功能需求3. 相关技术详细介绍3.1 Ja

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

PostgreSQL中MVCC 机制的实现

《PostgreSQL中MVCC机制的实现》本文主要介绍了PostgreSQL中MVCC机制的实现,通过多版本数据存储、快照隔离和事务ID管理实现高并发读写,具有一定的参考价值,感兴趣的可以了解一下... 目录一 MVCC 基本原理python1.1 MVCC 核心概念1.2 与传统锁机制对比二 Postg

SpringBoot整合Flowable实现工作流的详细流程

《SpringBoot整合Flowable实现工作流的详细流程》Flowable是一个使用Java编写的轻量级业务流程引擎,Flowable流程引擎可用于部署BPMN2.0流程定义,创建这些流程定义的... 目录1、流程引擎介绍2、创建项目3、画流程图4、开发接口4.1 Java 类梳理4.2 查看流程图4

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM