LeetCode 题目 94:五种算法递归|迭代|莫里斯|线索二叉树|栈的迭代二叉树 实现中序遍历

本文主要是介绍LeetCode 题目 94:五种算法递归|迭代|莫里斯|线索二叉树|栈的迭代二叉树 实现中序遍历,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文详细探讨了五种二叉树中序遍历算法,包括递归、迭代、莫里斯遍历、线索二叉树和栈的迭代,评估了它们的效率和实用性。


题目描述

给定一个二叉树的根节点 root,返回它的中序遍历。

输入格式
  • root:二叉树的根节点。
输出格式
  • 返回中序遍历结果的列表。

示例

示例 1
输入: root = [1,null,2,3]
输出: [1,3,2]

方法一:递归

解题步骤
  1. 递归遍历:先遍历左子树,然后访问根节点,最后遍历右子树。
完整的规范代码
class TreeNode:def __init__(self, val=0, left=None, right=None):self.val = valself.left = leftself.right = rightdef inorderTraversal(root):"""递归实现二叉树的中序遍历:param root: TreeNode, 二叉树的根节点:return: List[int], 中序遍历的结果"""def helper(node, res):if node:helper(node.left, res)res.append(node.val)helper(node.right, res)result = []helper(root, result)return result# 示例调用
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)
print(inorderTraversal(root))  # 输出: [1,3,2]
算法分析
  • 时间复杂度:(O(n)),每个节点访问一次。
  • 空间复杂度:(O(h)),递归栈的深度,其中 (h) 是树的高度。

方法二:迭代

解题步骤
  1. 使用栈:利用栈来模拟递归过程,先深入访问左子树,再访问节点,最后处理右子树。
完整的规范代码
def inorderTraversal(root):"""迭代实现二叉树的中序遍历:param root: TreeNode, 二叉树的根节点:return: List[int], 中序遍历的结果"""stack, res = [], []current = rootwhile current or stack:while current:stack.append(current)current = current.leftcurrent = stack.pop()res.append(current.val)current = current.rightreturn res# 示例调用
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)
print(inorderTraversal(root))  # 输出: [1,3,2]
算法分析
  • 时间复杂度:(O(n)),每个节点访问一次。
  • 空间复杂度:(O(h)),栈的最大深度等于树的高度。

方法三:莫里斯遍历 (Morris Traversal)

解题步骤
  1. 线索二叉树:利用叶子节点中的空 right 指针指向中序遍历的后继节点,从而实现空间复杂度为 (O(1)) 的遍历。
完整的规范代码
def inorderTraversal(root):"""莫里斯遍历实现二叉树的中序遍历:param root: TreeNode, 二叉树的根节点:return: List[int], 中序遍历的结果"""res, current = [], rootwhile current:if current.left:# 找到左子树的最右节点pre = current.leftwhile pre.right and pre.right != current:pre = pre.rightif not pre.right:pre.right = currentcurrent = current.leftelse:pre.right = Noneres.append(current.val)current = current.rightelse:res.append(current.val)current = current.rightreturn res# 示例调用
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)
print(inorderTraversal(root))  # 输出: [1,3,2]
算法分析
  • 时间复杂度:(O(n)),尽管看似复杂,但每个节点最多被处理两次(一次连接前驱,一次断开前驱)。
  • 空间复杂度:(O(1)),不使用额外空间。

方法四:线索二叉树

解题步骤

线索二叉树是一种通过链接空的左指针指向节点的前驱,空的右指针指向节点的后继来增加遍历效率的方法。对于中序遍历,可以通过构建线索二叉树来无需额外空间和递归地完成遍历。

  1. 构建线索:在构建或遍历时,把空的左指针指向中序遍历的前驱,右指针指向后继。
  2. 遍历节点:从根节点开始,一直向左下走到最左,然后使用线索向右移动。
完整的规范代码
def inorderTraversal(root):"""使用线索二叉树的方法进行中序遍历:param root: TreeNode, 二叉树的根节点:return: List[int], 中序遍历的结果"""result = []current = rootwhile current:if current.left:pre = current.leftwhile pre.right and pre.right != current:pre = pre.rightif not pre.right:pre.right = current  # 建立线索current = current.leftcontinuepre.right = None  # 断开线索result.append(current.val)current = current.rightreturn result# 示例调用
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)
print(inorderTraversal(root))  # 输出: [1,3,2]
算法分析
  • 时间复杂度:(O(n)),每个节点被访问至多两次。
  • 空间复杂度:(O(1)),不使用额外空间,除了输出列表。

方法五:使用栈的非递归迭代

解题步骤

这种方法使用显式栈存储将要访问的节点,模拟递归过程。

  1. 使用栈:利用显式栈存储节点来模拟递归的调用栈。
  2. 处理节点:按照中序的顺序处理每个节点,即左-根-右。
完整的规范代码
def inorderTraversal(root):"""使用栈的迭代方法进行中序遍历:param root: TreeNode, 二叉树的根节点:return: List[int], 中序遍历的结果"""stack = []result = []current = rootwhile current or stack:while current:stack.append(current)current = current.leftcurrent = stack.pop()result.append(current.val)current = current.rightreturn result# 示例调用
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)
print(inorderTraversal(root))  # 输出: [1,3,2]
算法分析
  • 时间复杂度:(O(n)),每个节点被访问一次。
  • 空间复杂度:(O(h)),栈的最大深度等于树的高度。

下面是五种中序遍历二叉树算法的优劣势对比表,这有助于直观地了解每种方法的特点和适用场景:

方法时间复杂度空间复杂度优势劣势
递归(O(n))(O(h))简单直观;直接符合中序遍历定义。可能导致栈溢出;递归深度受树高限制。
迭代(O(n))(O(h))避免递归导致的栈溢出。实现较为复杂;需要手动维护栈。
莫里斯遍历(O(n))(O(1))不使用额外空间;适合内存限制严格的环境。修改树的结构(临时);实现复杂,难以掌握。
线索二叉树(O(n))(O(1))通过线索化减少空间使用,无栈无递归。需要修改树的结构,实现较复杂。
栈的迭代(O(n))(O(h))易于理解和实现;不修改树的结构。需要额外的存储空间模拟调用栈。

应用示例

  • 算法设计与数据结构教育:递归和迭代方法经常用于教学,展示基本的树遍历技术。
  • 计算机图形学:中序遍历可用于场景图管理,处理具有层次结构的图形对象。
  • 编译器构建:在抽象语法树(AST)的处理中,中序遍历可以用于生成输出代码或。

这篇关于LeetCode 题目 94:五种算法递归|迭代|莫里斯|线索二叉树|栈的迭代二叉树 实现中序遍历的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/958702

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1

如何在 Spring Boot 中实现 FreeMarker 模板

《如何在SpringBoot中实现FreeMarker模板》FreeMarker是一种功能强大、轻量级的模板引擎,用于在Java应用中生成动态文本输出(如HTML、XML、邮件内容等),本文... 目录什么是 FreeMarker 模板?在 Spring Boot 中实现 FreeMarker 模板1. 环

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

利用python实现对excel文件进行加密

《利用python实现对excel文件进行加密》由于文件内容的私密性,需要对Excel文件进行加密,保护文件以免给第三方看到,本文将以Python语言为例,和大家讲讲如何对Excel文件进行加密,感兴... 目录前言方法一:使用pywin32库(仅限Windows)方法二:使用msoffcrypto-too