webrtc 的回声抵消(aec、aecm)算法简介

2024-05-03 18:58

本文主要是介绍webrtc 的回声抵消(aec、aecm)算法简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

webrtc 的回声抵消(aec、aecm)算法主要包括以下几个重要模块:

   1.回声时延估计2.NLMS(归一化最小均方自适应算法) 3.NLP(非线性滤波)4.CNG(舒适噪声产生),一般经典aec算法还应包括双端检测(DT)。

考虑到webrtc使用的NLMS、NLP和CNG都属于经典算法范畴,故只做简略介绍,本文重点介绍webrtc的回声时延估计算法,这也是webrtc回声抵消算法区别一般算法(如视频会议中的算法)比较有特色的地方。

  1. 回声时延估计
    回声延时长短对回声抵消器的性能有比较大的影响(此处不考虑pc上的线程同步的问题),过长的滤波器抽头也无法实际应用,因此时延估计算法就显得比较重要了。常用且容易想到的估计算法是基于相关的时延估计算法(学过通信原理的应该不会陌生),另外相关算法在语音编码中也得到广泛的应用,如 amr系列,G.729系列 ,G.718等编码器。在语音信号自相关求基音周期时,由于编码器一般按帧处理,帧长度一般是10或20ms,在该时延范围内搜索基音周期运算量较小,然而对于回声抵消的应用场合,延时搜索范围比较大,带来很高的运算复杂度。在手持终端设备上,我们需要考虑移动环境的变化对算法性能的影响,比如时延是否随机变化,反射路径线性还是非线性,以及运算量(电池)是否符合要求,则更为复杂。

    回到webrtc的回声时延估计,它采用的是gips首席科学家Bastiaan的算法。下面介绍一下该算法的主要思想:
    设1表示有说话音,0表示无说话音(静音或者很弱的声音),参考端(远端)信号x(t)和接收端(近端)信号y(t)可能的组合方式有以下几种:(0,0),(0,1),(1,0),(1,1),
    (0,0)表示远端和近端都是比较弱的声音,(1,1)表示远端和近端都是比较强的声音,webrt的c代码默认其它两种情况是不可能发生的。设在时间间隔p上,即p=1,2,…,P, 频带q,q=1,2,…,Q上,输入信号x加窗(如汉宁窗)后的功率谱用Xw(p,q)来表示,对每个频带中的功率谱设定一个门限Xw(p,q)_threshold,
    如果 Xw(p,q) >= Xw(p,q)_threshold , 则Xw(p,q) =1;
    如果 Xw(p,q) < Xw(p,q)_threshold , 则Xw(p,q) =0;
    同理,对于信号y(t),加窗信号功率谱Yw(p,q)和门限Yw(p,q)_threshold,
    如果 Yw(p,q) >= Yw(p,q)_threshold , 则Yw(p,q) =1;
    如果 Yw(p,q) < Yw(p,q)_threshold , 则Yw(p,q) =0;
    考虑到实际处理的方便,在webrtc的c代码中,将经过fft变换后的频域功率谱分为32个子带,这样每个特定子带 Xw(p,q)的值可以用1个比特来表示,总共需要32个比特,只用一个32位数据类型就可以表示了。
    webrtc对参考信号定义了75个32位binary_far_history的数组存放历史远端参考信号,定义了16个32位binary_near_history的数组存放历史近端参考信号,最近的值都放在下标为0的数组中,使用binary_near_history[15]的32位bit与binary_far_history数组中75个32位bit分别按位异或,得到75个32位比特数据,32位bit的物理意义是近似地使用功率谱来统计两帧信号的相关性。统计32位结果中的1的个数存于bit_counts中,接下来用对bit_counts进行平滑防止延时突变,得到mean_bit_count,可以看出 mean_bit_count 越小,则表明近端数据与该帧的远端数据越吻合,两者的时延越接近所需要的延时数值,用value_best_candidate表示。剩下的工作是对边界数值进行保护,如果value_best_candidate接近最差延时(预设),则表明数值不可靠,这时不更新延时数据;如果数据可靠,则进一步使用一阶markvo模型,比照上一次时延数据确定本次最终的更新时延last_delay.
    Bastiaan的专利本身要比现有的c代码实现更为复杂,比如在异或的时候(0,0),(0,1),(1,0),(1,1)四种组合可以附加代价函数,而c代码相当于默认给(0,0),(1,1)附加权值为1,给(0,1),(1,0)附加权值为0;
    另外c代码算法是按帧顺序依次对远端和近端数组异或,实际应用时也可以每隔1帧或2帧做异或,这样可以扩大搜索范围。
    总的来说webrtc的时延估计算法复杂度比求相关大大简化,尤其适用于移动终端等对运算量比较敏感的场合进行回声消除。针对实际应用场合,算法还有提升的空间。

  2. NLMS(归一化最小均方自适应算法
    LMS/NLMS/AP/RLS等都是经典的自适应滤波算法,此处只对webrtc中使用的NLMS算法做简略介绍。
    设远端信号为x(n),近段信号为d(n),W(n),则误差信号e(n)=d(n)-w’(n)x(n) (此处‘表示转秩),NLMS对滤波器的系数更新使用变步长方法,即步长u=u0/(gamma+x’(n)x(n));其中u0为更新步长因子,gamma是稳定因子,则滤波器系数更新方程为 W(n+1)=W(n)+ue(n)*x(n); NLMS比传统LMS算法复杂度略高,但收敛速度明显加快。LMS/NLMS性能差于AP和RLS算法。
    另外值得一提的是webrtc使用了分段块频域自适应滤波(PBFDAF)算法,这也是自适应滤波器的常用算法。
    自适应滤波的更多资料可以参考simon haykin 的《自适应滤波器原理》。

  3. NLP(非线性滤波)
    webrtc采用了维纳滤波器。此处只给出传递函数的表达式,设估计的语音信号的功率谱为Ps(w),噪声信号的功率谱为Pn(w),则滤波器的传递函数为H(w)=Ps(w)/(Ps(w)+Pn(w))。

4)CNG(舒适噪声产生)
webrtc采用的舒适噪声生成器比较简单,首先生成在[0 ,1 ]上均匀分布的随机噪声矩阵,再用噪声的功率谱开方后去调制噪声的幅度。

总的说来,webrtc的aec算法简单、实用、易于商业化,另一方面猜测c代码还有所保留。

这篇关于webrtc 的回声抵消(aec、aecm)算法简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957411

相关文章

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Java Docx4j类库简介及使用示例详解

《JavaDocx4j类库简介及使用示例详解》Docx4j是一个强大而灵活的Java库,非常适合需要自动化生成、处理、转换MicrosoftOffice文档的服务器端或后端应用,本文给大家介绍Jav... 目录1.简介2.安装与依赖3.基础用法示例3.1 创建一个新 DOCX 并添加内容3.2 读取一个已存

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

Java Stream 并行流简介、使用与注意事项小结

《JavaStream并行流简介、使用与注意事项小结》Java8并行流基于StreamAPI,利用多核CPU提升计算密集型任务效率,但需注意线程安全、顺序不确定及线程池管理,可通过自定义线程池与C... 目录1. 并行流简介​特点:​2. 并行流的简单使用​示例:并行流的基本使用​3. 配合自定义线程池​示

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Python库 Django 的简介、安装、用法入门教程

《Python库Django的简介、安装、用法入门教程》Django是Python最流行的Web框架之一,它帮助开发者快速、高效地构建功能强大的Web应用程序,接下来我们将从简介、安装到用法详解,... 目录一、Django 简介 二、Django 的安装教程 1. 创建虚拟环境2. 安装Django三、创

MySQL 索引简介及常见的索引类型有哪些

《MySQL索引简介及常见的索引类型有哪些》MySQL索引是加速数据检索的特殊结构,用于存储列值与位置信息,常见的索引类型包括:主键索引、唯一索引、普通索引、复合索引、全文索引和空间索引等,本文介绍... 目录什么是 mysql 的索引?常见的索引类型有哪些?总结性回答详细解释1. MySQL 索引的概念2

Qt QCustomPlot库简介(最新推荐)

《QtQCustomPlot库简介(最新推荐)》QCustomPlot是一款基于Qt的高性能C++绘图库,专为二维数据可视化设计,它具有轻量级、实时处理百万级数据和多图层支持等特点,适用于科学计算、... 目录核心特性概览核心组件解析1.绘图核心 (QCustomPlot类)2.数据容器 (QCPDataC

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.