webrtc 的回声抵消(aec、aecm)算法简介

2024-05-03 18:58

本文主要是介绍webrtc 的回声抵消(aec、aecm)算法简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

webrtc 的回声抵消(aec、aecm)算法主要包括以下几个重要模块:

   1.回声时延估计2.NLMS(归一化最小均方自适应算法) 3.NLP(非线性滤波)4.CNG(舒适噪声产生),一般经典aec算法还应包括双端检测(DT)。

考虑到webrtc使用的NLMS、NLP和CNG都属于经典算法范畴,故只做简略介绍,本文重点介绍webrtc的回声时延估计算法,这也是webrtc回声抵消算法区别一般算法(如视频会议中的算法)比较有特色的地方。

  1. 回声时延估计
    回声延时长短对回声抵消器的性能有比较大的影响(此处不考虑pc上的线程同步的问题),过长的滤波器抽头也无法实际应用,因此时延估计算法就显得比较重要了。常用且容易想到的估计算法是基于相关的时延估计算法(学过通信原理的应该不会陌生),另外相关算法在语音编码中也得到广泛的应用,如 amr系列,G.729系列 ,G.718等编码器。在语音信号自相关求基音周期时,由于编码器一般按帧处理,帧长度一般是10或20ms,在该时延范围内搜索基音周期运算量较小,然而对于回声抵消的应用场合,延时搜索范围比较大,带来很高的运算复杂度。在手持终端设备上,我们需要考虑移动环境的变化对算法性能的影响,比如时延是否随机变化,反射路径线性还是非线性,以及运算量(电池)是否符合要求,则更为复杂。

    回到webrtc的回声时延估计,它采用的是gips首席科学家Bastiaan的算法。下面介绍一下该算法的主要思想:
    设1表示有说话音,0表示无说话音(静音或者很弱的声音),参考端(远端)信号x(t)和接收端(近端)信号y(t)可能的组合方式有以下几种:(0,0),(0,1),(1,0),(1,1),
    (0,0)表示远端和近端都是比较弱的声音,(1,1)表示远端和近端都是比较强的声音,webrt的c代码默认其它两种情况是不可能发生的。设在时间间隔p上,即p=1,2,…,P, 频带q,q=1,2,…,Q上,输入信号x加窗(如汉宁窗)后的功率谱用Xw(p,q)来表示,对每个频带中的功率谱设定一个门限Xw(p,q)_threshold,
    如果 Xw(p,q) >= Xw(p,q)_threshold , 则Xw(p,q) =1;
    如果 Xw(p,q) < Xw(p,q)_threshold , 则Xw(p,q) =0;
    同理,对于信号y(t),加窗信号功率谱Yw(p,q)和门限Yw(p,q)_threshold,
    如果 Yw(p,q) >= Yw(p,q)_threshold , 则Yw(p,q) =1;
    如果 Yw(p,q) < Yw(p,q)_threshold , 则Yw(p,q) =0;
    考虑到实际处理的方便,在webrtc的c代码中,将经过fft变换后的频域功率谱分为32个子带,这样每个特定子带 Xw(p,q)的值可以用1个比特来表示,总共需要32个比特,只用一个32位数据类型就可以表示了。
    webrtc对参考信号定义了75个32位binary_far_history的数组存放历史远端参考信号,定义了16个32位binary_near_history的数组存放历史近端参考信号,最近的值都放在下标为0的数组中,使用binary_near_history[15]的32位bit与binary_far_history数组中75个32位bit分别按位异或,得到75个32位比特数据,32位bit的物理意义是近似地使用功率谱来统计两帧信号的相关性。统计32位结果中的1的个数存于bit_counts中,接下来用对bit_counts进行平滑防止延时突变,得到mean_bit_count,可以看出 mean_bit_count 越小,则表明近端数据与该帧的远端数据越吻合,两者的时延越接近所需要的延时数值,用value_best_candidate表示。剩下的工作是对边界数值进行保护,如果value_best_candidate接近最差延时(预设),则表明数值不可靠,这时不更新延时数据;如果数据可靠,则进一步使用一阶markvo模型,比照上一次时延数据确定本次最终的更新时延last_delay.
    Bastiaan的专利本身要比现有的c代码实现更为复杂,比如在异或的时候(0,0),(0,1),(1,0),(1,1)四种组合可以附加代价函数,而c代码相当于默认给(0,0),(1,1)附加权值为1,给(0,1),(1,0)附加权值为0;
    另外c代码算法是按帧顺序依次对远端和近端数组异或,实际应用时也可以每隔1帧或2帧做异或,这样可以扩大搜索范围。
    总的来说webrtc的时延估计算法复杂度比求相关大大简化,尤其适用于移动终端等对运算量比较敏感的场合进行回声消除。针对实际应用场合,算法还有提升的空间。

  2. NLMS(归一化最小均方自适应算法
    LMS/NLMS/AP/RLS等都是经典的自适应滤波算法,此处只对webrtc中使用的NLMS算法做简略介绍。
    设远端信号为x(n),近段信号为d(n),W(n),则误差信号e(n)=d(n)-w’(n)x(n) (此处‘表示转秩),NLMS对滤波器的系数更新使用变步长方法,即步长u=u0/(gamma+x’(n)x(n));其中u0为更新步长因子,gamma是稳定因子,则滤波器系数更新方程为 W(n+1)=W(n)+ue(n)*x(n); NLMS比传统LMS算法复杂度略高,但收敛速度明显加快。LMS/NLMS性能差于AP和RLS算法。
    另外值得一提的是webrtc使用了分段块频域自适应滤波(PBFDAF)算法,这也是自适应滤波器的常用算法。
    自适应滤波的更多资料可以参考simon haykin 的《自适应滤波器原理》。

  3. NLP(非线性滤波)
    webrtc采用了维纳滤波器。此处只给出传递函数的表达式,设估计的语音信号的功率谱为Ps(w),噪声信号的功率谱为Pn(w),则滤波器的传递函数为H(w)=Ps(w)/(Ps(w)+Pn(w))。

4)CNG(舒适噪声产生)
webrtc采用的舒适噪声生成器比较简单,首先生成在[0 ,1 ]上均匀分布的随机噪声矩阵,再用噪声的功率谱开方后去调制噪声的幅度。

总的说来,webrtc的aec算法简单、实用、易于商业化,另一方面猜测c代码还有所保留。

这篇关于webrtc 的回声抵消(aec、aecm)算法简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/957411

相关文章

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

rust 中的 EBNF简介举例

《rust中的EBNF简介举例》:本文主要介绍rust中的EBNF简介举例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 什么是 EBNF?2. 核心概念3. EBNF 语法符号详解4. 如何阅读 EBNF 规则5. 示例示例 1:简单的电子邮件地址

Python 异步编程 asyncio简介及基本用法

《Python异步编程asyncio简介及基本用法》asyncio是Python的一个库,用于编写并发代码,使用协程、任务和Futures来处理I/O密集型和高延迟操作,本文给大家介绍Python... 目录1、asyncio是什么IO密集型任务特征2、怎么用1、基本用法2、关键字 async1、async

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.