代码随想录算法训练营DAY48|C++动态规划Part9|121.买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III

本文主要是介绍代码随想录算法训练营DAY48|C++动态规划Part9|121.买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 121.买卖股票的最佳时机
    • 思路
    • CPP代码
  • 122.买卖股票的最佳时机II
    • 思路
    • CPP代码
  • 123.买卖股票的最佳时机III
    • 思路
    • CPP代码

121.买卖股票的最佳时机

力扣题目链接

文章讲解:121.买卖股票的最佳时机

视频讲解:动态规划之 LeetCode:121.买卖股票的最佳时机1

状态:非常与众不同的动态规划题,也是一类典型的动态规划题。

思路

  • dp数组的含义

dp[i][0]表示第i天持有这支股票能获得的最大现金,dp[i][1]表示第i天不持有这支股票能获得的最大现金。

最终要求的结果就是最后一天的状态:max(dp[len-1][0], dp[len-1][i])

并且应该注意的是,我们这里是第i天持有这支股票,并不代表我在第i天才买,我有可能之前就买了;同理,我们第i天不持有这支股票并不代表我第i天才卖。并且我们在最后拿结果的时候,肯定是dp[len(prices)][1],因为无论怎么着,我们不持有这支股票获利肯定都比在最后一天还持有股票来的高

  • 递推公式

    • 先讨论一下dp[i][0]

      • 首先确定do[i][0]表示第i天持有这支股票,那么dp[i-1][0]呢?其实他们两个是相等的, 因为我们前后两天都是持有股票;

        再一个,我们我们是在第i天才买入这支股票的话,那么也就是说我在i-1天是不持有这支股票的,并且在第i天花了买股票的钱所以直接dp[i][0]直接就是-price[i]

        综上所述:dp[i][0]=max(dp[i-1][0], -prices[i])

    • 再就是dp[i][1]

      • 同理,我们的前一天也可以是不持有这支股票的状态dp[i-1][1],此时的话和dp[i][1]他们两个相等
      • 那么如果,我们在第i天把这支股票给卖了变成了dp[i][1],那么此时我们现在手里的钱就是前一天持有股票的最大金额再加上今天卖股票赚的钱dp[i-1][0]+prices[i]
      • 综上所述:dp[i][1]=max(dp[i-1][1], dp[i-1][0]+prices[i])
  • dp数组的初始化

从公式可以看出来,我们的dp[0][0]dp[0][1]是我们整个递推公式的基础,那么dp[0][0]=-prices[0]dp[0][1]=0;然后其他的均初始化为多少其实都无所谓。

  • 遍历顺序

没讲究,直接从前向后遍历

  • 举例推导dp数组

以示例1,输入:[7,1,5,3,6,4]为例,dp数组状态如下:

20210224225642465

CPP代码

我们从递推公式可以看出:

dp[i][0] = max(dp[i - 1][0], -prices[i]);
dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);

dp[i]只与dp[i-1]的状态有关,所以完全可以用滚动数组,也就是只需要记录 当前天的dp状态和前一天的dp状态就可以了

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
};

122.买卖股票的最佳时机II

力扣题目链接

文章链接:122.买卖股票的最佳时机II

视频链接:动态规划,股票问题第二弹 | LeetCode:122.买卖股票的最佳时机II

状态:可以实现多次买卖,这个时候最主要的不同体现在递推公式上。如果会121.买卖股票的最佳时机,本题就比较简单

思路

本题唯一的区别就是本题的股票可以买卖多次(只有一只股票,所以再次购买前要出售掉之前的股票)

所以本题和121.买卖股票的最佳时机唯一的区别就在于递推公式,其他的地方都是一样的。首先,我们重申一下dp数组的含义:dp[i][0] 表示第i天持有股票所得现金;dp[i][1] 表示第i天不持有股票所得最多现金

  • 递推公式

在121.买卖股票的最佳时机中,由于股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]

本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润


接下来开始讨论核心代码:

那么如果第i天持有股票,如果是在第i天买入的,那么所得现金就是昨天不持有股票的现金再减去今天股票的价格,所以dp[i - 1][1] - prices[i]

如果第i天不持有股票即dp[i][1]

  1. i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  2. i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金即:prices[i] + dp[i - 1][0]

综上所述:递推公式为

            dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);

CPP代码

这里仅给出滚动数组版本的代码( 只记录当前天的dp状态和前一天的dp状态

class Solution {
public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], dp[(i - 1) % 2][1] - prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
};

123.买卖股票的最佳时机III

力扣题目链接

文章链接:123.买卖股票的最佳时机III

视频链接:动态规划,股票至多买卖两次,怎么求? | LeetCode:123.买卖股票最佳时机III

状态:看到困难吓我一跳

本题有又变套路了,题目中谈到,至多买卖两次,这就意味着可以买卖一次、可以买卖两次、也可以不买卖。

但其实最本质的无非就是要设置的状态多多了,之前我们也就两个状态,持有和不持有

思路

  • 确定dp数组以及下标的含义

现在,我们状态比之前多多了:

  1. 没有操作 (其实我们也可以不设置这个状态)
  2. 第一次持有股票
  3. 第一次不持有股票
  4. 第二次持有股票
  5. 第二次不持有股票

dp[i][j]i表示第i天,j[0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

  • 确定递推公式
  1. 我们确定dp[i][1]的状态
    在这里插入图片描述

我们应该从两种情况里选择最大的,即dp[i][1]=max(dp[i-1][0]=prices[i], dp[i-1][1])

  1. 确定dp[i][2]的状态

在这里插入图片描述

同理dp[i][2]=max(dp[i-1][1] + prices[i], do[i-1][2])

3.确定dp[i][3]的状态

在这里插入图片描述

同理dp[i][3]=max(dp[i-1][2] + prices[i], do[i-1][3])

  1. 确定dp[i][4]的状态

在这里插入图片描述

同理dp[i][4]=max(dp[i-1][3] + prices[i], do[i-1][4])

  • dp数组的初始化

首先,我们只用初始化第0天,因为从此之后的n天都是由前一天初始化来的。

然后,dp[0][0]显然是等于0的,

每次的买入操作应当初始化为-prices[0],因为买入我们本次的钱肯定就是负数了,至于第二次买入可以理解为我们第零天先买入,再卖出,然后再买入

卖出操作应该初始化为0,因为就算再同一天买入卖出收获的钱肯定是0

vector<vector<int>> dp(prices.size(), vector<int>(5, 0));
dp[0][1] = -prices[0];
dp[0][3] = -prices[0];
  • 确定遍历顺序

跟之前的一样,从左到右即可

  • 举例推导dp数组

以输入[1,2,3,4,5]为例

20201228181724295-20230310134201291

我们最终的最大利润肯定是出现在最后一天的第二次dp[4][4]

CPP代码

class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = dp[i - 1][0];dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}
};//空间优化(滚动数组)
class Solution {
public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<int> dp(5, 0);dp[1] = -prices[0];dp[3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[1] = max(dp[1], dp[0] - prices[i]);dp[2] = max(dp[2], dp[1] + prices[i]);dp[3] = max(dp[3], dp[2] - prices[i]);dp[4] = max(dp[4], dp[3] + prices[i]);}return dp[4];}
};

这篇关于代码随想录算法训练营DAY48|C++动态规划Part9|121.买卖股票的最佳时机、122.买卖股票的最佳时机II、123.买卖股票的最佳时机III的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/956345

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

Redis实现高效内存管理的示例代码

《Redis实现高效内存管理的示例代码》Redis内存管理是其核心功能之一,为了高效地利用内存,Redis采用了多种技术和策略,如优化的数据结构、内存分配策略、内存回收、数据压缩等,下面就来详细的介绍... 目录1. 内存分配策略jemalloc 的使用2. 数据压缩和编码ziplist示例代码3. 优化的

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

MySQL的配置文件详解及实例代码

《MySQL的配置文件详解及实例代码》MySQL的配置文件是服务器运行的重要组成部分,用于设置服务器操作的各种参数,下面:本文主要介绍MySQL配置文件的相关资料,文中通过代码介绍的非常详细,需要... 目录前言一、配置文件结构1.[mysqld]2.[client]3.[mysql]4.[mysqldum

Python多线程实现大文件快速下载的代码实现

《Python多线程实现大文件快速下载的代码实现》在互联网时代,文件下载是日常操作之一,尤其是大文件,然而,网络条件不稳定或带宽有限时,下载速度会变得很慢,本文将介绍如何使用Python实现多线程下载... 目录引言一、多线程下载原理二、python实现多线程下载代码说明:三、实战案例四、注意事项五、总结引

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数