python提取COCO数据集中特定的类

2024-05-01 15:38

本文主要是介绍python提取COCO数据集中特定的类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

记录一下提取Coco自行车类别的过程


1.安装pycocotools github地址:https://github.com/philferriere/cocoapi

 pip install git+https://github.com/philferriere/cocoapi.git#subdirectory=PythonAPI

2.提取其中的bicycle类的代码如下:

需要修改的地方

savepath

datasets_list

classes_names

dataDir

 使用的这篇博客中的代码

https://blog.csdn.net/weixin_38632246/article/details/97141364

from pycocotools.coco import COCO
import os
import shutil
from tqdm import tqdm
# import skimage.io as io
import matplotlib.pyplot as plt
import cv2
from PIL import Image, ImageDraw#提取出的类别的保存路径
savepath="/media/deepnorth/14b6945d-9936-41a8-aeac-505b96fc2be8/COCO/"img_dir=savepath+'images/'
anno_dir=savepath+'Annotations/'
# datasets_list=['train2014', 'val2014']
datasets_list=['train2014']#这里填写需要提取的类别,本人此处提取bicycle  
classes_names = ['bicycle']  #原coco数据集的目录
dataDir= '/media/deepnorth/14b6945d-9936-41a8-aeac-505b96fc2be8/COCO/'  headstr = """\
<annotation><folder>VOC</folder><filename>%s</filename><source><database>My Database</database><annotation>COCO</annotation><image>flickr</image><flickrid>NULL</flickrid></source><owner><flickrid>NULL</flickrid><name>company</name></owner><size><width>%d</width><height>%d</height><depth>%d</depth></size><segmented>0</segmented>
"""
objstr = """\<object><name>%s</name><pose>Unspecified</pose><truncated>0</truncated><difficult>0</difficult><bndbox><xmin>%d</xmin><ymin>%d</ymin><xmax>%d</xmax><ymax>%d</ymax></bndbox></object>
"""tailstr = '''\
</annotation>
'''#if the dir is not exists,make it,else delete it
def mkr(path):if os.path.exists(path):shutil.rmtree(path)os.mkdir(path)else:os.mkdir(path)
mkr(img_dir)
mkr(anno_dir)
def id2name(coco):classes=dict()for cls in coco.dataset['categories']:classes[cls['id']]=cls['name']return classesdef write_xml(anno_path,head, objs, tail):f = open(anno_path, "w")f.write(head)for obj in objs:f.write(objstr%(obj[0],obj[1],obj[2],obj[3],obj[4]))f.write(tail)def save_annotations_and_imgs(coco,dataset,filename,objs):#eg:COCO_train2014_000000196610.jpg-->COCO_train2014_000000196610.xmlanno_path=anno_dir+filename[:-3]+'xml'img_path=dataDir+dataset+'/'+filenameprint(img_path)dst_imgpath=img_dir+filenameimg=cv2.imread(img_path)#if (img.shape[2] == 1):#    print(filename + " not a RGB image")#   returnshutil.copy(img_path, dst_imgpath)head=headstr % (filename, img.shape[1], img.shape[0], img.shape[2])tail = tailstrwrite_xml(anno_path,head, objs, tail)def showimg(coco,dataset,img,classes,cls_id,show=True):global dataDirI=Image.open('%s/%s/%s'%(dataDir,dataset,img['file_name']))#通过id,得到注释的信息annIds = coco.getAnnIds(imgIds=img['id'], catIds=cls_id, iscrowd=None)# print(annIds)anns = coco.loadAnns(annIds)# print(anns)# coco.showAnns(anns)objs = []for ann in anns:class_name=classes[ann['category_id']]if class_name in classes_names:print(class_name)if 'bbox' in ann:bbox=ann['bbox']xmin = int(bbox[0])ymin = int(bbox[1])xmax = int(bbox[2] + bbox[0])ymax = int(bbox[3] + bbox[1])obj = [class_name, xmin, ymin, xmax, ymax]objs.append(obj)draw = ImageDraw.Draw(I)draw.rectangle([xmin, ymin, xmax, ymax])if show:plt.figure()plt.axis('off')plt.imshow(I)plt.show()return objsfor dataset in datasets_list:#./COCO/annotations/instances_train2014.jsonannFile='{}/annotations/instances_{}.json'.format(dataDir,dataset)#COCO API for initializing annotated datacoco = COCO(annFile)#show all classes in cococlasses = id2name(coco)print(classes)#[1, 2, 3, 4, 6, 8]classes_ids = coco.getCatIds(catNms=classes_names)print(classes_ids)for cls in classes_names:#Get ID number of this classcls_id=coco.getCatIds(catNms=[cls])img_ids=coco.getImgIds(catIds=cls_id)print(cls,len(img_ids))# imgIds=img_ids[0:10]for imgId in tqdm(img_ids):img = coco.loadImgs(imgId)[0]filename = img['file_name']# print(filename)objs=showimg(coco, dataset, img, classes,classes_ids,show=False)print(objs)save_annotations_and_imgs(coco, dataset, filename, objs)

 

COCO数据集2014

代码执行完之后会生成对应的  images文件夹和 Annotations(.xml)文件夹

 

有了这两个文件就可以利用voc的代码转换为yolo目标检测的txt标签文件

相关代码

需要修改的参数

classes

data_path

list_file

in_file

out_file

import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import joinclasses = ["bicycle"]def convert(size, box):dw = 1./(size[0])dh = 1./(size[1])x = (box[0] + box[1])/2.0 - 1y = (box[2] + box[3])/2.0 - 1w = box[1] - box[0]h = box[3] - box[2]x = x*dww = w*dwy = y*dhh = h*dhreturn (x,y,w,h)def convert_annotation(image_id):in_file = open('coco_voc_val/Annotations/%s.xml'%(image_id))out_file = open('coco_voc_val/labels/%s.txt'%(image_id), 'w')tree=ET.parse(in_file)root = tree.getroot()size = root.find('size')w = int(size.find('width').text)h = int(size.find('height').text)for obj in root.iter('object'):difficult = obj.find('difficult').textcls = obj.find('name').textprint(cls)if cls not in classes or int(difficult)==1:continuecls_id = classes.index(cls)xmlbox = obj.find('bndbox')b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))bb = convert((w,h), b)out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')data_path = '/media/COCO/coco_voc_val/images'
img_names = os.listdir(data_path)list_file = open('2014_val.txt', 'w')
for img_name in img_names:if not os.path.exists('coco_voc_val/labels'):os.makedirs('coco_voc_val/labels')list_file.write('/media/COCO/coco_voc_val/images/%s\n'%img_name)image_id = img_name[:-4]convert_annotation(image_id)list_file.close()

 

这篇关于python提取COCO数据集中特定的类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/952043

相关文章

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

python删除xml中的w:ascii属性的步骤

《python删除xml中的w:ascii属性的步骤》使用xml.etree.ElementTree删除WordXML中w:ascii属性,需注册命名空间并定位rFonts元素,通过del操作删除属... 可以使用python的XML.etree.ElementTree模块通过以下步骤删除XML中的w:as

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

使用Python绘制3D堆叠条形图全解析

《使用Python绘制3D堆叠条形图全解析》在数据可视化的工具箱里,3D图表总能带来眼前一亮的效果,本文就来和大家聊聊如何使用Python实现绘制3D堆叠条形图,感兴趣的小伙伴可以了解下... 目录为什么选择 3D 堆叠条形图代码实现:从数据到 3D 世界的搭建核心代码逐行解析细节优化应用场景:3D 堆叠图

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编