本文主要是介绍Python容器转换与共有函数举例详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
《Python容器转换与共有函数举例详解》Python容器是Python编程语言中非常基础且重要的概念,它们提供了数据的存储和组织方式,下面:本文主要介绍Python容器转换与共有函数的相关资料,...
Python容器转换与共有函数详解
一、容器类型概览
Python主要的内置容器类型:
| 容器类型 | 描述 | 可变性 | 是否有序 | 示例 |
|---|---|---|---|---|
| 列表(list) | 有序的元素集合 | 可变 | 有序 | [1, 2, 3] |
| 元组(tuple) | 不可变的元素集合 | 不可变 | 有序 | (1, 2, 3) |
| 集合(set) | 无序的唯一元素集合 | 可变 | 无序 | {1, 2, 3} |
| 冻结集合(frozenset) | 不可变的集合 | 不可变 | 无序 | frozenset([1, 2, 3]) |
| 字典(dict) | 键值对映射 | 可变 | Python 3.7+有序 | {'a': 1, 'b': 2} |
| 字符串(str) | 字符序列 | 不可变 | 有序 | "hello" |
| 字节(bytes) | 字节序列 | 不可变 | 有序 | b"hello" |
| 字节数组(bytearray) | 可变的字节序列 | 可变 | 有序 | bytearray(b"hello") |
二、容器类型转换
1. 基本容器转换
# ==================== 基本容器转换 ====================
# 1. 列表与其他容器的转换
original_list = [1, 2, 3, 2, 1] # 包含重复元素
# 列表 -> 元组
list_to_tuple = tuple(original_list)
print(f"列表转元组: {original_list} -> {list_to_tuple}")
print(f"类型: {type(list_to_tuple)}")
# 列表 -> 集合(自动去重)
list_to_set = set(original_list)
print(f"列表转集合: {original_list} -> {list_to_set}")
print(f"类型: {type(list_to_set)}")
# 列表 -> 冻结集合
list_to_frozenset = frozenset(original_list)
print(f"列表转冻结集合: {original_list} -> {list_to_frozenset}")
print(f"类型: {type(list_to_frozenset)}")
print("\n" + "="*50 + "\n")
# 2. 元组与其他容器的转换
original_tuple = (1, 2, 3, 2, 1)
# 元组 -> 列表
tuple_to_list = list(original_tuple)
print(f"元组转列表: {original_tuple} -> {tuple_to_list}")
# 元组 -> 集合
tuple_to_set = set(original_tuple)
print(f"元组转集合: {original_tuple} -> {tuple_to_set}")
# 元组 -> 冻结集合
tuple_to_frozenset = frozenset(original_tuple)
print(f"元组转冻结集合: {original_tuple} -> {tuple_to_frozenset}")
print("\n" + "="*50 + "\n")
# 3. 集合与其他容器的转换
original_set = {1, 2, 3, 4, 5}
# 集合 -> 列表(无序,可能顺序不同)
set_to_list = list(original_set)
print(f"集合转列表: {original_set} -> {set_to_list}")
# 集合 -> 元组
set_to_tuple = tuple(original_set)
print(f"集合转元组: {original_set} -> {set_to_tuple}")
# 集合 -> 冻结集合
set_to_frozenset = frozenset(original_set)
print(f"集合转冻结集合: {original_set} -> {set_to_frozenset}")
print("\n" + "="*50 + "\n")
# 4. 字符串与容器的转换
text = "hello world"
# 字符串 -> 列表(字符列表)
str_to_list = list(text)
print(f"字符串转列表: '{text}' -> {str_to_list}")
# 字符串 -> 元组
str_to_tuple = tuple(text)
print(f"字符串转元组: '{text}' -> {str_to_tuple}")
# 字符串 -> 集合(唯一字符)
str_to_set = set(text)
print(f"字符串转集合: '{text}' -> {str_to_set}")
# 列表 -> 字符串(join方法)
list_to_str = ''.join(['h', 'e', 'l', 'l', 'o'])
print(f"字符列表转字符串: {['h', 'e', 'l', 'l', 'o']} -> '{list_to_str}'")
# 单词列表转字符串
words = ['hello', 'world', 'python']
words_to_str = ' '.join(words)
print(f"单词列表转字符串: {words} -> '{words_to_str}'")
print("\n" + "="*50 + "\n")
# 5. 字典与其他容器的转换
original_dict = {'a': 1, 'b': 2, 'c': 3}
# 字典 -> 列表(只保留键)
dict_keys_to_list = list(original_dict)
print(f"字典转列表(键): {original_dict} -> {dict_keys_to_list}")
# 字典 -> 列表(键列表)
dict_keys_list = list(original_dict.keys())
print(f"字典键转列表: {original_dict} -> {dict_keys_list}")
# 字典 -> 列表(值列表)
dict_values_list = list(original_dict.values())
print(f"字典值转列表: {original_dict} -> {dict_values_list}")
# 字典 -> 列表(键值对列表)
dict_items_list = list(original_dict.items())
print(f"字典项转列表: {original_dict} -> {dict_items_list}")
# 字典 -> 元组(键的元组)
dict_keys_tuple = tuple(original_dict)
print(f"字典键转元组: {original_dict} -> {dict_keys_tuple}")
# 字典 -> 集合(键的集合)
dict_keys_set = set(original_dict)
print(f"字典键转集合: {original_dict} -> {dict_keys_set}")
print("\n" + "="*50 + "\n")
# 6. 列表/元组 -> 字典(特殊转换)
# 使用zip将两个列表转换为字典
keys = ['a', 'b', 'c']
values = [1, 2, 3]
list_to_dict = dict(zip(keys, values))
print(f"两个列表转字典: keys={keys}, values={values} -> {list_to_dict}")
# 列表/元组的元组/列表 -> 字典
pairs = [('a', 1), ('b', 2), ('c', 3)]
pairs_to_dict = dict(pairs)
print(f"对列表转字典: {pairs} -> {pairs_to_dict}")
# 嵌套列表转字典
nested_list = [['x', 10], ['y', 20], ['z', 30]]
nested_to_dict = dict(nested_list)
print(f"嵌套列表转字典: {nested_list} -> {nested_to_dict}")
2. 高级转换示例
# ==================== 高级转换技巧 ====================
def advanced_conversions():
print("高级转换技巧示例:")
# 1. 使用推导式进行转换
numbers = [1, 2, 3, 4, 5]
# 列表推导式转换
squares = [x**2 for x in numbers]
print(f"数字平方列表: {numbers} -> {squares}")
# 字典推导式转换
square_dict = {x: x**2 for x in numbers}
print(f"数字平方字典: {numbers} -> {square_dict}")
# 集合推导式转换
square_set = {x**2 for x in numbers}
print(f"数字平方集合: {numbers} -> {square_set}")
# 2. 使用map函数转换
numbers_str = list(map(str, numbers))
print(f"数字转字符串列表: {numbers} -> {numbers_str}")
# 3. 使用filter过滤转换
even_numbers = list(filter(lambda x: x % 2 == 0, numbers))
print(f"过滤偶数: {numbers} -> {even_numbers}")
# 4. 嵌套容器转换
nested_list = [[1, 2], [3, 4], [5, 6]]
# 展平嵌套列表
flat_list = [item for sublist in nested_list for item in sublist]
print(f"展平嵌套列表: {nested_list} -> {flat_list}")
# 5. 多重转换
data = [(1, 'a'), (2, 'b'), (3, 'c')]
# 转换为字典
tuple_list_to_dict = dict(data)
print(f"元组列表转字典: {data} -> {tuple_list_to_dict}")
# 转换为两个列表
nums, letters = zip(*data) if data else ([], [])
print(f"元组列表拆分为两个列表: {data} -> nums={nums}, letters={letters}")
# 6. 自定义对象转换
class Person:
def __init__(self, name, age):
self.name = name
self.age = age
def __repr__(self):
return f"Person(name={self.name}, age={self.age})"
people = [Person("Alice", 25), Person("Bob", 30), Person("Charlie", 35)]
# 对象列表转换为名字列表
names = [person.name for person in people]
print(f"对象列表转名字列表: {people} -> {names}")
# 对象列表转换为字典
people_dict = {person.name: person.age for person in people}
print(f"对象列表转字典: {people} -> {people_dict}")
advanced_conversions()
3. 实际应用场景
# ==================== 实际应用场景 ====================
def practical_applications():
print("\n实际应用场景:")
# 场景1: 数据清洗和去重
print("场景1: 数据清洗和去重")
raw_data = [5, 2, 8, 2, 5, 9, 1, 5, 8]
# 使用集合去重,然后排序
cleaned_data = sorted(set(raw_data))
print(f"原始数据: {raw_data}")
print(f"清洗后数据: {cleaned_data}")
# 场景2: 统计词频
print("\n场景2: 统计词频")
text = "apple banana apple orange banana apple"
words = text.split()
# 多种方法统计词频
# 方法1: 使用字典
word_count = {}
for word in words:
word_count[word] = word_count.get(word, 0) + 1
print(f"方法1 - 字典统计: {word_count}")
# 方法2: 使用collections.Counter
from collections import Counter
word_counter = Counter(words)
print(f"方法2 - Counter统计: {dict(word_counter)}")
# 场景3: 矩阵转置
print("\n场景3: 矩阵转置")
matrix = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
]
# 使用zip转置
transposed = list(zip(*matrix))
print(f"原始矩阵: {matrix}")
print(f"转置矩阵: {transposed}")
# 场景4: 分组数据
print("\n场景4: 分组数据")
students = [
("Alice", "Math", 85),
("Bob", "Math", 90),
("Alice", "Science", 92),
("Bob", "Science", 88),
("Charlie", "Math", 78)
]
# 按学生分组成绩
from collections import defaultdict
student_grades = defaultdict(list)
for name, subject, grade in students:
student_grades[name].append((subject, grade))
print("按学生分组成绩:")
for student, grades in student_grades.items():
print(f" {student}: {grades}")
# 场景5: 配置文件解析
print("\n场景5: 配置文件解析")
config_lines = [
"DATABASE_HOST=localhost",
"DATABASE_PORT=5432",
"DATABASE_NAME=mydb",
"DEBUG=true"
]
# 转换为配置字典
config_dict = {}
for line in config_lines:
if '=' in line:
key, value = line.split('=', 1)
config_dict[key] = value
print(f"配置字典: {config_dict}")
# 场景6: 处理CSV数据
print("\n场景6: 处理CSV数据")
csv_data = "name,age,city\nAlice,25,New York\nBob,30,London\nCharlie,35,Paris"
# 解析CSV为列表字典
lines = csv_data.split('\n')
headers = lines[0].split(',')
records = []
for line in lines[1:]:
values = line.split(',')
record = dict(zip(headers, values))
records.append(record)
print("解析后的数据:")
for record in records:
print(f" {record}")
practical_applications()
三、容器共有函数
1. 通用操作函数
# ==================== 容器共有函数 ====================
def common_container_functions():
print("容器共有函数示例:")
# 示例数据
sample_list = [1, 2, 3, 4, 5]
sample_tuple = (1, 2, 3, 4, 5)
sample_set = {1, 2, 3, 4, 5}
sample_dict = {'a': 1, 'b': 2, 'c': 3}
sample_string = "hello"
# 1. len() - 获取容器长度
print("\n1. len() - 获取容器长度:")
print(f"列表长度: len({sample_list}) = {len(sample_list)}")
print(f"元组长度: len({sample_tuple}) = {len(sample_tuple)}")
print(f"集合长度: len({sample_set}) = {len(sample_set)}")
print(f"字典长度: len({sample_dict}) = {len(sample_dict)}")
print(f"字符串长度: len('{sample_string}') = {len(sample_string)}")
# 2. max() - 获取最大值
print("\n2. max() - 获取最大值:")
print(f"列表最大值: max({sample_list}) = {max(sample_list)}")
print(f"元组最大值: max({sample_tuple}) = {max(sample_tuple)}")
print(f"集合最大值: max({sample_set}) = {max(sample_set)}")
# 字典最大值(默认比较键)
print(f"字典键最大值: max({sample_dict}) = {max(sample_dict)}")
print(f"字典值最大值: max({sample_dict}.values()) = {max(sample_dict.values())}")
# 3. min() - 获取最小值
print("\n3. min() - 获取最小值:")
print(f"列表最小值: min({sample_list}) = {min(sample_list)}")
print(f"元组最小值: min({sample_tuple}) = {min(sample_tuple)}")
print(f"集合最小值: min({sample_set}) = {min(sample_set)}")
# 4. sum() - 求和(仅限数值容器)
print("\n4. sum() - 求和:")
print(f"列表求和: sum({sample_list}) = {sum(sample_list)}")
print(f"元组求和: sum({sample_tuple}) = {sum(sample_tuple)}")
print(f"集合求和: sum({sample_set}) = {sum(sample_set)}")
# 字典值求和
print(f"字典值求和: sum({sample_dict}.values()) = {sum(sample_dict.values())}")
# 5. any() - 任意元素为真则返回True
print("\n5. any() - 任意元素为真:")
test_list = [0, False, '', None]
print(f"any({test_list}) = {any(test_list)}")
test_list2 = [0, False, 1, '']
print(f"any({test_list2}) = {any(test_list2)}")
# 6. all() - 所有元素为真则返回True
print("\n6. all() - 所有元素为真:")
print(f"all({test_list}) = {all(test_list)}")
print(f"all({sample_list}) = {all(sample_list)}")
# 7. sorted() - 排序(返回新列表)
print("\n7. sorted() - 排序:")
unsorted_list = [3, 1, 4, 1, 5, 9, 2]
print(f"排序前: {unsorted_list}")
print(f"升序排序: {sorted(unsorted_list)}")
print(f"降序排序: {sorted(unsorted_list, reverse=True)}")
# 字典排序
print(f"字典按键排序: {sorted(sample_dict)}")
print(f"字典按值排序: {sorted(sample_dict.items(), key=lambda x: x[1])}")
# 8. reversed() - 反转(返回迭代器)
print("\n8. reversed() - 反转:")
print(f"列表反转: {list(reversed(sample_list))}")
print(f"元组反转: {tuple(reversed(sample_tuple))}")
print(f"字符串反转: {''.join(reversed(sample_string))}")
# 9. enumerate() - 同时获取索引和值
print("\n9. enumerate() - 枚举:")
print("列表枚举:")
for index, value in enumerate(sample_list):
print(f" [{index}] = {value}")
print("字典枚举(键值对):")
for index, (key, value) in enumerate(sample_dict.items()):
print(f" [{index}] {key} = {value}")
# 10. zip() - 并行迭代多个容器
print("\n10. zip() - 并行迭代:")
names = ["Alice", "Bob", "Charlie"]
ages = [25, 30, 35]
cities = ["New York", "London", "Paris"]
print("并行迭代多个列表:")
for name, age, city in zip(names, ages, cities):
print(f" {name} ({age}岁) 来自 {city}")
# 转换为字典
people_dict = dict(zip(names, ages))
print(f"通过zip创建字典: {people_dict}")
common_container_functions()
2. 成员测试和迭代
# ==================== 成员测试和迭代 ====================
def membership_and_iteration():
print("\n成员测试和迭代:")
# 示例数据
fruits = ["apple", "banana", "orange", "grape"]
fruit_set = {"apple", "banana", "orange", "grape"}
fruit_dict = {"apple": 1, "banana": 2, "orange": 3, "grape": 4}
# 1. in 操作符 - 成员测试
print("1. in 操作符 - 成员测试:")
# 列表成员测试
print(f"'apple' 在列表 {fruits} 中: {'apple' in fruits}")
print(f"'pear' 在列表 {fruits} 中: {'pear' in fruits}")
# 集合成员测试(更快)
print(f"'apple' 在集合 {fruit_set} 中: {'apple' in fruit_set}")
# 字典成员测试(默认测试键)
print(f"'apple' 在字典 {fruit_dict} 的键中: {'apple' in fruit_dict}")
print(f"1 在字典 {fruit_dict} 的值中: {1 in fruit_dict.values()}")
print(f"('apple', 1) 在字典 {fruit_dict} 的项中: {('apple', 1) in fruit_dict.items()}")
# 2. not in 操作符
print("\n2. not in 操作符:")
print(f"'pear' 不在列表 {fruits} 中: {'pear' not in fruits}")
# 3. 迭代容器
print("\n3. 迭代容器:")
# 列表迭代
print("迭代列表:")
for fruit in fruits:
print(f" - {fruit}")
# 集合迭代(无序)
print("\n迭代集合:")
for fruit in fruit_set:
print(f" - {fruit}")
# 字典迭代
print("\n迭代字典(键):")
for key in fruit_dict:
print(f" - {key}")
print("\n迭代字典(键值对):")
for key, value in fruit_dict.items():
print(f" - {key}: {value}")
# 4. 带索引的迭代
print("\n4. 带索引的迭代:")
print("使用enumerate:")
for i, fruit in enumerate(fruits):
print(f" [{i}] {fruit}")
# 5. 同时迭代多个容器
print("\n5. 同时迭代多个容器:")
quantities = [10, 20, 15, 25]
prices = [1.5, 0.8, 2.0, 3.5]
print("水果库存:")
for fruit, qty, price in zip(fruits, quantities, prices):
total = qty * price
print(f" {fruit}: {qty}个 ${price} = ${total:.2f}")
# 6. 使用iter()和next()手动迭代
print("\n6. 手动迭代:")
fruit_iter = iter(fruits)
print(f"第一次next: {next(fruit_iter)}")
print(f"第二次next: {next(fruit_iter)}")
print(f"第三次next: {next(fruit_iter)}")
# 7. 迭代时修改容器(注意事项)
print("\n7. 迭代时修改容器(注意事项):")
# 错误示例:迭代时删除元素
numbers = [1, 2, 3, 4, 5]
print(f"原始列表: {numbers}")
# 安全的方式:创建副本或使用列表推导式
numbers_copy = numbers.copy()
to_remove = []
for num in numbers_copy:
if num % 2 == 0:
to_remove.append(num)
for num in to_remove:
numbers.remove(num)
print(f"删除偶数后: {numbers}")
# 使用列表推导式(更简洁)
numbers = [1, 2, 3, 4, 5]
numbers = [num for num in numbers if num % 2 != 0]
print(f"使用推导式删除偶数后: {numbers}")
membership_and_iteration()
3. 切片操作(适用于序列类型)
# ==================== 切片操作 ====================
def slicing_operations():
print("\n切片操作(适用于序列类型):")
# 示例数据
data = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
text = "Hello, World!"
# 基本切片语法: sequence[start:stop:step]
# 1. 基本切片
print("1. 基本切片:")
print(f"完整序列: {data}")
print(f"data[2:6]: {data[2:6]}") # 从索引2到5(不包含6)
print(f"data[:5]: {data[:5]}") # 从开始到索引4
print(f"data[5:]: {data[5:]}") # 从索引5到结束
print(f"data[:]: {data[:]}") # 完整副本
# 2. 带步长的切片
print("\n2. 带步长的切片:")
print(f"data[::2]: {data[::2]}") # 每隔一个元素
print(f"data[1::2]: {data[1::2]}") # 从索引1开始,每隔一个
print(f"data[2:8:2]: {data[2:8:2]}") # 从2到7,每隔一个
# 3. 负索引切片
print("\n3. 负索引切片:")
print(f"data[-3:]: {data[-3:]}") # 最后3个元素
print(f"data[:-3]: {data[:-3]}") # 除了最后3个
print(f"data[-5:-2]: {data[-5:-2]}") # 从倒数第5到倒数第3
# 4. 负步长(反转)
print("\n4. 负步长(反转):")
print(f"data[::-1]: {data[::-1]}") # 反转列表
print(f"data[5:1:-1]: {data[5:1:-1]}") # 从索引5到索引2(反向)
print(f"data[-2:-6:-1]: {data[-2:-6:-1]}") # 从倒数第2到倒数第5(反向)
# 5. 字符串切片
print("\n5. 字符串切片:")
print(f"原始字符串: '{text}'")
print(f"text[0:5]: '{text[0:5]}'") # Hello
print(f"text[7:12]: '{text[7:12]}'") # World
print(f"text[::2]: '{text[::2]}'") # 每隔一个字符
print(f"text[::-1]: '{text[::-1]}'") # 反转字符串
# 6. 元组切片
print("\n6. 元组切片:")
data_tuple = tuple(data)
print(f"元组切片 data_tuple[2:6]: {data_tuple[2:6]}")
# 7. 切片赋值(仅可变序列)
print("\n7. 切片赋值(仅可变序列):")
numbers = [0, 1, 2, 3, 4, 5]
print(f"原始列表: {numbers}")
# 替换切片部分
numbers[2:4] = [20, 30, 40] # 可以改变元素数量
print(f"替换后: {numbers}")
# 删除切片部分
numbers[1:4] = []
print(f"删除后: {numbers}")
# 插入元素
numbers[2:2] = [100, 200] # 在索引2处插入
print(f"插入后: {numbers}")
# 8. 高级切片应用
print("\n8. 高级切片应用:")
# 提取每行数据的特定列
matrix = [
[1, 2, 3, 4],
[5, 6, 7, 8],
[9, 10, 11, 12]
]
# 提取第二列
col2 = [row[1] for row in matrix]
print(f"矩阵第二列: {col2}")
# 使用切片获取子矩阵
submatrix = [row[1:3] for row in matrix[1:3]]
print(f"子矩阵: {submatrix}")
# 9. 自定义可切片对象
print("\n9. 自定义可切片对象:")
class SliceableList:
def __init__(self, data):
self.data = list(data)
def __getitem__(self, key):
if isinstance(key, slice):
# 处理切片
return self.data[key]
else:
# 处理单个索引
return self.data[key]
def __setitem__(self, key, value):
if isinstance(key, slice):
self.data[key] = value
else:
self.data[key] = value
def __repr__(self):
return f"SliceableList({self.data})"
custom_list = SliceableList(range(10))
print(f"自定义列表: {custom_list}")
print(f"自定义列表切片[2:7:2]: {custom_list[2:7:2]}")
slicing_operations()
4. 容器比较和复制
# ==================== 容器比较和复制 ====================
def comparison_and_copy():
print("\n容器比较和复制:")
# 1. 容器比较
print("1. 容器比较:")
# 列表比较(按元素逐个比较)
list1 = [1, 2, 3]
list2 = [1, 2, 3]
list3 = [1, 2, 4]
print(f"{list1} == {list2}: {list1 == list2}")
print(f"{list1} == {list3}: {list1 == list3}")
print(f"{list1} != {list3}: {list1 != list3}")
# 字典比较(比较键值对)
dict1 = {'a': 1, 'b': 2}
dict2 = {'b': 2, 'a': 1} # 顺序不同
print(f"{dict1} == {dict2}: {dict1 == dict2}")
# 集合比较
set1 = {1, 2, 3}
set2 = {3, 2, 1} # 顺序不同
print(f"{set1} == {set2}: {set1 == set2}")
# 包含关系比较
print(f"{set1} 是 {set2} 的超集: {set1 >= set2}")
print(f"{set1} 是 {set2} 的子集: {set1 <= set2}")
# 2. 浅拷贝(shallow copy)
print("\n2. 浅拷贝:")
original = [[1, 2], [3, 4]]
# 列表的浅拷贝方法
copy1 = original.copy() # copy()方法
copy2 = list(original) # 构造函数
copy3 = original[:] # 切片
print(f"原始列表: {original}")
print(f"浅拷贝1: {copy1}")
print(f"浅拷贝2: {copy2}")
print(f"浅拷贝3: {copy3}")
# 修改原始列表
original[0][0] = 100
print(f"修改原始列表后:")
print(f"原始列表: {original}")
print(f"浅拷贝1: {copy1}") # 也被修改了!
print("注意:浅拷贝只复制第一层,嵌套对象是共享的")
# 3. 深拷贝(deep copy)
print("\n3. 深拷贝:")
import copy
original = [[1, 2], [3, 4]]
deep_copy = copy.deepcopy(original)
print(f"原始列表: {original}")
print(f"深拷贝: {deep_copy}")
# 修改原始列表
original[0][0] = 100
print(f"修改原始列表后:")
print(f"原始列表: {original}")
print(f"深拷贝: {deep_copy}") # 未被修改
print("注意:深拷贝复制所有嵌套对象")
# 4. 复制字典
print("\n4. 字典复制:")
original_dict = {'a': [1, 2], 'b': [3, 4]}
# 浅拷贝
shallow_dict = original_dict.copy()
# 深拷贝
deep_dict = copy.deepcopy(original_dict)
# 修改原始字典
original_dict['a'][0] = 100
print(f"原始字典: {original_dict}")
print(f"浅拷贝字典: {shallow_dict}") # 嵌套列表被修改
print(f"深拷贝字典: {deep_dict}") # 未被修改
# 5. 复制集合
print("\n5. 集合复制:")
original_set = {1, 2, 3}
# 集合复制
set_copy = original_set.copy()
print(f"原始集合: {original_set}")
print(f"复制集合: {set_copy}")
# 6. 不可变容器的"复制"
print("\n6. 不可变容器的'复制':")
# 元组是不可变的,所以赋值只是创建引用
original_tuple = (1, 2, [3, 4])
tuple_reference = original_tuple
# 要创建包含可变元素的元组的真正副本
import copy
tuple_copy = copy.deepcopy(original_tuple)
# 修改原始元组中的列表
original_tuple[2][0] = 100
print(f"原始元组: {original_tuple}")
print(f"元组引用: {tuple_reference}") # 也被修改了
print(f"元组深拷贝: {tuple_copy}") # 未被修改
# 7. 性能考虑
print("\n7. 性能考虑:")
# 测试不同复制方法的性能
import time
large_list = list(range(1000000))
# 测试浅拷贝性能
start = time.time()
shallow_copy = large_list.copy()
shallow_time = time.time() - start
# 测试切片复制性能
start = time.time()
slice_copy = large_list[:]
slice_time = time.time() - start
# 测试构造函数复制性能
start = time.time()
constructor_copy = list(large_list)
constructor_time = time.time() - start
print(f"浅拷贝时间: {shallow_time:.6f}秒")
print(f"切片复制时间: {slice_time:.6f}秒")
print(f"构造函数复制时间: {constructor_time:.6f}秒")
print("三种方法性能相近,选择最清晰的方式即可")
comparison_and_copy()
5. 内置函数与容器操作
# ==================== 内置函数与容器操作 ====================
def builtin_functions_with_containers():
print("\n内置函数与容器操作:")
# 1. map() - 对容器中每个元素应用函数
print("1. map() - 映射:")
numbers = [1, 2, 3, 4, 5]
# 转换为字符串
str_numbers = list(map(str, numbers))
print(f"数字转字符串: {numbers} -> {str_numbers}")
# 计算平方
squares = list(map(lambda x: x**2, numbers))
print(f"计算平方: {numbers} -> {squares}")
# 2. filter() - 过滤容器元素
print("\n2. filter() - 过滤:")
# 过滤偶数
even_numbers = list(filter(lambda x: x % 2 == 0, numbers))
print(f"过滤偶数: {numbers} -> {even_numbers}")
# 过滤非空字符串
strings = ["hello", "", "world", "", "python"]
non_empty = list(filter(None, strings)) # None会过滤掉假值
print(f"过滤空字符串: {strings} -> {non_empty}")
# 3. reduce() - 累积计算(需要functools)
print("\n3. reduce() - 累积计算:")
from functools import reduce
# 计算乘积
product = reduce(lambda x, y: x * y, numbers)
print(f"计算乘积: {numbers} -> {product}")
# 连接字符串
words = ["Hello", "World", "Python"]
concatenated = reduce(lambda x, y: x + " " + y, words)
print(f"连接字符串: {words} -> '{concatenated}'")
# 4. zip() - 合并多个容器
print("\n4. zip() - 合并容器:")
names = ["Alice", "Bob", "Charlie"]
ages = [25, 30, 35]
# 合并为元组列表
people = list(zip(names, ages))
print(f"合并列表: names={names}, ages={ages} -> {people}")
# 处理不等长列表
list1 = [1, 2, 3]
list2 = ['a', 'b', 'c', 'd']
combined = list(zip(list1, list2)) # 以最短的为准
print(f"不等长合并: {list1}, {list2} -> {combined}")
# 5. enumerate() - 带索引的迭代
print("\n5. enumerate() - 带索引迭代:")
fruits = ["apple", "banana", "orange"]
print("带索引迭代:")
for index, fruit in enumerate(fruits):
print(f" [{index}] {fruit}")
# 指定起始索引
print("指定起始索引为1:")
for index, fruit in enumerate(fruits, start=1):
print(f" [{index}] {fruit}")
# 6. sorted() 和 reversed() 的更多用法
print("\n6. sorted() 和 reversed():")
# 复杂对象排序
students = [
{"name": "Alice", "age": 25},
{"name": "Bob", "age": 30},
{"name": "Charlie", "age": 22}
]
# 按年龄排序
sorted_by_age = sorted(students, key=lambda x: x["age"])
print(f"按年龄排序: {sorted_by_age}")
# 按姓名排序
sorted_by_name = sorted(students, key=lambda x: x["name"])
print(f"按姓名排序: {sorted_by_name}")
# 多级排序
from operator import itemgetter
data = [
("apple", 3, 1.5),
("banana", 2, 0.8),
("apple", 1, 1.5),
("banana", 3, 0.8)
]
# 先按名称,再按数量排序
multi_sorted = sorted(data, key=itemgetter(0, 1))
print(f"多级排序: {multi_sorted}")
# 7. all() 和 any() 的高级用法
print("\n7. all() 和 any() 的高级用法:")
# 检查所有字符串长度大于2
strings = ["hello", "world", "python", "go"]
all_long = all(len(s) > 2 for s in strings)
print(f"所有字符串长度>2: {strings} -> {all_long}")
# 检查是否有字符串包含特定字符
any_contains_o = any('o' in s for s in strings)
print(f"有字符串包含'o': {strings} -> {any_contains_o}")
# 8. sum() 的进阶用法
print("\n8. sum() 的进阶用法:")
# 计算嵌套列表总和
nested = [[1, 2, 3], [4, 5], [6, 7, 8, 9]]
total = sum(sum(sublist) for sublist in nested)
print(f"嵌套列表总和: {nested} -> {total}")
# 计算字典值总和
inventory = {"apples": 10, "bananas": 5, "oranges": 8}
total_items = sum(inventory.values())
print(f"库存总数: {inventory} -> {total_items}")
# 9. 使用iter()和next()的高级模式
print("\n9. iter()和next()的高级模式:")
# 分批处理
def BATch_process(data, batch_size=3):
"""将数据分批处理"""
it = iter(data)
while True:
batch = []
try:
for _ in range(batch_size):
batch.append(next(it))
yield batch
except StopIteration:
if batch:
yield batch
break
numbers = list(range(10))
print(f"原始数据: {numbers}")
print("分批处理:")
for i, batch in enumerate(batch_process(numbers, 3), 1):
print(f" 批次{i}: {batch}")
builtin_functions_with_containers()
四、综合应用示例
# ==================== 综合应用示例 ====================
def comprehensive_example():
print("\n综合应用示例:")
# 场景:学生成绩管理系统
students_data = [
{"id": 1, "name": "Alice", "scores": {"math": 85, "english": 90, "science": 88}},
{"id": 2, "name": "Bob", "scores": {"math": 78, "english": 85, "science": 92}},
{"id": 3, "name": "Charlie", "scores": {"math": 92, "english": 88, "science": 95}},
{"id": 4, "name": "Diana", "scores": {"math": 65, "english": 70, "science": 68}},
]
# 1. 提取所有学生姓名
student_names = [student["name"] for student in students_data]
print(f"1. 所有学生姓名: {student_names}")
# 2. 计算每个学生的平均分
student_averages = []
for student in students_data:
name = student["name"]
scores = student["scores"].values()
average = sum(scores) / len(scores) if scores else 0
student_averages.append((name, average))
print(f"\n2. 学生平均分: {student_averages}")
# 3. 按平均分排序
sorted_students = sorted(student_averages, key=lambda x: x[1], reverse=True)
print(f"\n3. 按平均分排序: {sorted_students}")
# 4. 找出数学成绩最高的学生
math_scores = [(student["name"], student["scores"]["math"]) for student in students_data]
top_math_student = max(math_scores, key=lambda x: x[1])
print(f"\n4. 数学最高分: {top_math_student}")
# 5. 统计各科目平均分
subjects = ["math", "english", "science"]
subject_averages = {}
for subject in subjects:
scores = [student["scores"][subject] for student in students_data]
subject_averages[subject] = sum(scores) / len(scores)
print(f"\n5. 各科目平均分:")
for subject, avg in subject_averages.items():
print(f" {subject}: {avg:.2f}")
# 6. 找出需要帮助的学生(任一科目低于70分)
struggling_students = []
for student in students_data:
name = student["name"]
low_scores = [subject for subject, score in student["scores"].items() if score < 70]
if low_scores:
struggling_students.append((name, low_scores))
print(f"\n6. 需要帮助的学生:")
for student, low_subjects in struggling_students:
print(f" {student}: {low_subjects}")
# 7. 创建成绩报告
print("\n7. 成绩报告:")
report = []
for student in students_data:
name = student["name"]
scores = student["scores"]
total = sum(scores.values())
average = total / len(scores)
# 成绩等级
if average >= 90:
grade = "A"
elif average >= 80:
grade = "B"
elif average >= 70:
grade = "C"
elif average >= 60:
grade = "D"
else:
grade = "F"
report.append({
"name": name,
"scores": scores,
"average": round(average, 2),
"grade": grade
})
for student_report in report:
print(f" {student_report['name']}: 平均分={student_report['average']}, 等级={student_report['grade']}")
print(f" 各科成绩: {student_report['scores']}")
# 8. 数据转换:将学生数据转换为不同的格式
print("\n8. 数据格式转换:")
# 转换为CSV格式
csv_lines = ["name,math,english,science,average,grade"]
for student_report in report:
csv_line = f"{student_report['name']},{student_report['scores']['math']},"
csv_line += f"{student_report['scores']['english']},{student_report['scores']['science']},"
csv_line += f"{student_report['average']},{student_report['grade']}"
csv_lines.append(csv_line)
print("CSV格式:")
for line in csv_lines:
print(f" {line}")
# 转换为字典格式(按学科分组)
subject_groups = {}
for subject in subjects:
subject_groups[subject] = {}
for student in students_data:
subject_groups[subject][student["name"]] = student["scores"][subject]
print("\n按学科分组:")
for subject, scores in subject_groups.items():
print(f" {subject}: {scores}")
comprehensive_example()
五、性能考虑与最佳实践
# ==================== 性能考虑与最佳实践 ====================
def performance_and_best_practices():
print("\n性能考虑与最佳实践:")
import time
import sys
# 1. 选择合适的容器类型
print("1. 选择合适的容器类型:")
# 测试列表和集合的成员测试性能
print("测试成员测试性能:")
# 创建大数据集
large_list = list(range(1000000))
large_set = set(large_list)
# 测试列表成员测试
start = time.time()
result = 999999 in large_list
list_time = time.time() - start
# 测试集合成员测试
start = time.time()
result = 999999 in large_set
set_time = time.time() - start
print(f" 列表成员测试时间: {list_time:.6f}秒")
print(f" 集合成员测试时间: {set_time:.6f}秒")
print(f" 集合比列表快 {list_time/set_time:.1f}倍")
# 2. 避免不必要的转换
print("\n2. 避免不必要的转换:")
data = list(range(10000))
# 不必要转换
start = time.time()
for _ in range(1000):
temp = list(data) # 创建不必要的副本
unnecessary_time = time.time() - start
# 直接使用
start = time.time()
for _ in range(1000):
temp = data # 直接引用
direct_time = time.time() - start
print(f" 不必要转换时间: {unnecessary_time:.6f}秒")
print(f" 直接使用时间: {direct_time:.6f}秒")
# 3. 使用生成器表达式代替列表推导式(节省内存)
print("\n3. 使用生成器表达式节省内存:")
# 大数据集
huge_range = range(10000000)
# 列表推导式(消耗大量内存)
print(" 列表推导式内存测试:")
start_memory = sys.getsizeof([])
# 注意:这里不实际创建,只是演示
# huge_list = [x**2 for x in huge_range] # 这会消耗大量内存
# 生成器表达式(节省内存)
print(" 生成器表达式内存测试:")
huge_gen = (x**2 for x in huge_range)
gen_memory = sys.getsizeof(huge_gen)
print(f" 生成器对象大小: {gen_memory}字节")
print(" 生成器只在迭代时生成值,不预先生成所有值")
# 4. 使用内置函数和库函数
print("\n4. 使用内置函数和库函数:")
numbers = list(range(1000000))
# 手动求最大值
start = time.time()
max_value = numbers[0]
for num in numbers:
if num > max_value:
max_value = num
manual_time = time.time() - start
# 使用内置max函数
start = time.time()
max_value = max(numbers)
builtin_time = time.time() - start
print(f" 手动求最大值时间: {manual_time:.6f}秒")
print(f" 内置max函数时间: {builtin_time:.6f}秒")
# 5. 批量操作 vs 逐个操作
print("\n5. 批量操作 vs 逐个操作:")
# 创建测试数据
strings = ["hello"] * 10000
# 逐个连接(低效)
start = time.time()
result = ""
for s in strings:
result += s
concat_time = time.time() - start
# 批量连接(高效)
start = time.time()
result = "".join(strings)
join_time = time.time() - start
print(f" 逐个连接时间: {concat_time:.6f}秒")
print(f" 批量连接时间: {join_time:.6f}秒")
print(f" join()比逐个连接快 {concat_time/join_time:.1f}倍")
# 6. 适当使用切片
print("\n6. 适当使用切片:")
data = list(range(1000000))
# 复制列表的不同方法
start = time.time()
for _ in range(100):
copy1 = data[:]
slice_time = time.time() - start
start = time.time()
for _ in range(100):
copy2 = list(data)
list_time = time.time() - start
start = time.time()
for _ in range(100):
copy3 = data.copy()
copy_time = time.time() - start
print(f" 切片复制时间: {slice_time:.6f}秒")
print(f" 构造函数复制时间: {list_time:.6f}秒")
print(f" copy()方法时间: {copy_time:.6f}秒")
print(" 三种方法性能相似,选择最清晰的方式")
# 7. 总结建议
print("\n7. 最佳实践总结:")
print(" - 频繁成员测试时使用集合(set)而不是列表(list)")
print(" - 使用生成器表达式处理大数据节省内存")
print(" - 优先使用内置函数和库函数")
print(" - 字符串操作使用join()而不是循环拼接")
print(" - 避免不必要的容器转换和复制")
print(" - 使用切片进行高效复制和操作")
print(" - 根据需求选择合适的容器类型")
performance_and_best_practices()
总结
容器转换要点:
- 类型间转换:使用目标类型的构造函数(如
list(),tuple(),set(),dict()) - 字典转换:使用
dict()和zip()组合,或直接从键值对列表转换 - 字符串转换:使用
str()或join()方法 - 去重转换:使用
set()可以快速去重
容器共有函数要点:
- 通用函数:
len(),max(),min(),sum(),sorted(),reversed() - 成员测试:使用
in和not in操作符 - 迭代操作:
for循环,enumerate(),zip() - 切片操作:适用于所有序列类型(列表、元组、字符串)
- 比较操作:
==,!=,>,<等(不同类型容器比较规则不同)
性能建议:
- 选择合适容器:根据操作类型选择最有效的容器
- 使用内置函数:它们通常经过优化,比手动实现更快
- 避免不必要转换:特别是大数据集
- 批量操作优先:如使用
join()而非循环拼接字符串 - 注意深浅拷贝:根据需求选择正确的复制方式
掌握容器转换和共有函数是Python编程的基础,能够大大提高代码的简洁性和效率。
现代C++容器转换与共有函数详解
一、C++ STL容器概览
C++标准模板库(STL)提供了多种容器,分为序列容器、关联容器和无序关联容器。
| 容器类型 | 描述 | 头文件 | 示例 |
|---|---|---|---|
vector | 动态数组 | <vector> | vector<int> v = {1,2,3}; |
deque | 双端队列 | <deque> | deque<int> d = {1,2,3}; |
list | 双向链表 | <list> | list<int> l = {1,2,3}; |
forward_list | 单向链表 | <forward_list> | forward_list<int> fl = {1,2,3}; |
array | 固定大小数组 | <array> | array<int,3> a = {1,2,3}; |
set | 有序唯一键集合 | <set> | set<int> s = {1,2,3}; |
multiset | 有序集合(允许多个相同键) | <set> | multiset<int> ms = {1,2,2,3}; |
map | 有序键值对映射 | <map> | map<string,int> m = {{"a",1},{"b",2}}; |
multimap | 有序映射(允许多个相同键) | <map> | multimap<string,int> mm = {{"a",1},{"a",2}}; |
unordered_set | 无序唯一键集合 | <unordered_set> | unordered_set<int> us = {1,2,3}; |
unordered_multiset | 无序集合(允许多个相同键) | <unordered_set> | unordered_multiset<int> ums = {1,2,2,3}; |
unordered_map | 无序键值对映射 | <unordered_map> | unordered_map<string,int> um = {{"a",1},{"b",2}}; |
unordered_multimap | 无序映射(允许多个相同键) | <unordered_map> | unordered_multimap<string,int> umm = {{"a",1},{"a",2}}; |
stack | 栈(适配器) | <stack> | stack<int> st; |
queue | 队列(适配器) | <queue> | queue<int> q; |
priority_queue | 优先队列(适配器) | <queue> | priority_queue<int> pq; |
二、容器转换
在C++中,容器之间的转换通常通过构造函数、赋值操作或标准库算法来实现。由于C++是强类型语言,转换时需要考虑类型匹配和性能。
1. 使用构造函数进行转换
#include <IOStream> #include <vector> #include <list> #include <set> #include <map> #include <unordered_set> #include <algorithm> int main() { // 1. 从数组或初始化列表构造 int arr[] = {1, 2, 3, 2, 1}; std::vector<int> vec(std::begin(arr), std::end(arr)); std::cout << "vector from array: "; for (int x : vec) std::cout << x << ' '; std::cout << '\n'; // 2. 从vector构造list std::list<int> lst(vec.begin(), vec.end()); std::cout << "list from vector: "; for (int x : lst) std::cout << x << ' '; std::cout << '\n'; // 3. 从vector构造set(自动去重和排序) std::set<int> s(vec.begin(), vec.end()); std::cout << "set from vector (sorted and unique): "; for (int x : s) std::cout << x << ' '; std::cout << '\n'; // 4. 从vector构造unordered_set(去重,无序) std::unordered_set<int> us(vec.begin(), vec.end()); std::cout << "unordered_set from vector (unique, unordered): "; for (int x : us) std::cout << x << ' '; std::cout << '\n'; // 5. 将set转换为vector std::vector<int> vec2(s.begin(), s.end()); std::cout << "vector from set: "; for (int x : vec2) std::cout << x << ' '; std::cout << '\n'; // 6. 将两个vector组合成map std::vector<std::string> keys = {"one", "two", "three"}; std::vector<int> values = {1, 2, 3}; std::map<std::string, int> m; for (size_t i = 0; i < keys.size() && i < values.size(); ++i) { m[keys[i]] = values[i]; } std::cout << "map from two vectors: "; for (const auto& p : m) std::cout << p.first << ":" << p.second << ' '; std::cout << '\n'; // 使用std::transform和std::inserter std::map<std::string, int> m2; std::transform(keys.begin(), keys.end(), values.begin(), std::inserter(m2, m2.end()), [](const std::string& k, int v) { return std::make_pair(k, v); }); std::cout << "map using transform: "; for (const auto& p : m2) std::cout << p.first << ":" << p.second << ' '; std::cout << '\n'; return 0; }
2. 使用赋值和交换
#include <iostream>
#include <vector>
#include <list>
int main() {
std::vector<int> vec = {1, 2, 3, 4, 5};
std::list<int> lst;
// 使用assign方法(会覆盖原有内容)
lst.assign(vec.begin(), vec.end());
std::cout << "list after assign from vector: ";
for (int x : lst) std::cout << x << ' ';
std::cout << '\n';
// 使用swap交换两个相同类型的容器(常数时间)
std::vector<int> vec2 = {10, 20, 30};
std::cout << "before swap:\n";
std::cout << "vec: "; for (int x : vec) std::cout << x << ' '; std::cout << '\n';
std::cout << "vec2: "; for (int x : vec2) std::cout << x << ' '; std::cout << '\n';
vec.swap(vec2);
std::cout << "after swap:\n";
std::cout << "vec: "; for (int x : vec) std::cout << x << ' '; std::cout << '\n';
std::cout << "vec2: "; for (int x : vec2) std::cout << x << ' '; std::cout << '\n';
// 使用std::swap也可以
std::swap(vec, vec2);
std::cout << "after std::swap:\n";
std::cout << "vec: "; for (int x : vec) std::cout << x << ' '; std::cout << '\n';
std::cout << "vec2: "; for (int x : vec2) std::cout << x << ' '; std::cout << '\n';
return 0;
}
3. 使用算法进行转换
#include <iostream>
#include <vector>
#include <set>
#include <algorithm>
#include <iterator>
int main() {
std::vector<int> vec = {5, 3, 1, 4, 2, 3, 1};
// 复制到另一个vector
std::vector<int> vec2;
std::copy(vec.begin(), vec.end(), std::back_inserter(vec2));
std::cout << "copy to vec2: ";
for (int x : vec2) std::cout << x << ' ';
std::cout << '\n';
// 复制到set(去重和排序)
std::set<int> s;
std::copy(vec.begin(), vec.end(), std::inserter(s, s.begin()));
std::cout << "copy to set: ";
for (int x : s) std::cout << x << ' ';
std::cout << '\n';
// 使用std::transform进行转换
std::vector<int> vec3;
std::transform(vec.begin(), vec.end(), std::back_inserter(vec3),
[](int x) { return x * 2; });
std::cout << "transform (double): ";
for (int x : vec3) std::cout << x << ' ';
std::cout << '\n';
// 使用std::remove_copy_if过滤
std::vector<int> vec4;
std::remove_copy_if(vec.begin(), vec.end(), std::back_inserter(vec4),
[](int x) { return x % 2 == 0; });
std::cout << "remove_copy_if (remove even): ";
for (int x : vec4) std::cout << x << ' ';
std::cout << '\n';
// 使用std::unique_copy去重(需要先排序)
std::vector<int> vec5;
std::sort(vec.begin(), vec.end());
std::unique_copy(vec.begin(), vec.end(), std::back_inserter(vec5));
std::cout << "unique_copy after sorting: ";
for (int x : vec5) std::cout << x << ' ';
std::cout << '\n';
return 0;
}
三、容器共有函数
1. 通用成员函数
#include <iostream>
#include <vector>
#include <list>
#include <set>
#include <map>
void container_common_functions() {
std::cout << "=== 容器共有函数 ===\n";
// 1. 构造函数和析构函数
std::vector<int> v1 = {1, 2, 3}; // 初始化列表构造函数
std::vector<int> v2(v1.begin(), v1.end()); // 范围构造函数
std::vector<int> v3(5, 10); // 数量+值构造函数
// 2. 赋值操作
std::vector<int> v4;
v4 = v1; // 拷贝赋值
v4 = {4, 5, 6}; // 初始化列表赋值
v4.assign(3, 7); // assign方法
v4.assign(v1.begin(), v1.end()); // 范围assign
// 3. 迭代器
std::cout << "迭代器: ";
for (auto it = v1.begin(); it != v1.end(); ++it) {
std::cout << *it << " ";
}
std::cout << "\n";
std::cout << "反向迭代器: ";
for (auto it = v1.rbegin(); it != v1.rend(); ++it) {
std::cout << *it << " ";
}
std::cout << "\n";
// 4. 容量相关
std::cout << "size: " << v1.size() << "\n";
std::cout << "max_size: " << v1.max_size() << "\n";
std::cout << "empty: " << std::boolalpha << v1.empty() << "\n";
// vector特有的容量操作
v1.reserve(10);
std::cout << "capacity: " << v1.capacity() << "\n";
v1.shrink_to_fit();
// 5. 元素访问
if (!v1.empty()) {
std::cout << "front: " << v1.front() << "\n";
std::cout << "back: " << v1.back() << "\n";
}
// 6. 修改器
v1.push_back(4);
v1.pop_back();
v1.insert(v1.begin() + 1, 99);
v1.erase(v1.begin() + 1);
v1.clear();
// 7. 交换
std::vector<int> v5 = {10, 20, 30};
v1.swap(v5);
// 8. 比较操作
std::vector<int> a = {1, 2, 3};
std::vector<int> b = {1, 2, 3};
std::cout << "a == b: " << (a == b) << "\n";
std::cout << "a < b: " << (a < b) << "\n";
}
2. 序列容器特有操作
#include <iostream>
#include <vector>
#include <deque>
#include <list>
#include <forward_list>
#include <array>
void sequence_container_specific() {
std::cout << "\n=== 序列容器特有操作 ===\n";
// 1. vector - 动态数组
std::vector<int> vec = {1, 2, 3};
// 随机访问
std::cout << "vector[1]: " << vec[1] << "\n";
std::cout << "vector.at(1): " << vec.at(1) << "\n";
// 调整大小
vec.resize(5, 0); // 扩展,新增元素初始化为0
std::cout << "after resize(5): ";
for (int x : vec) std::cout << x << " ";
std::cout << "\n";
vec.resize(2); // 缩小
std::cout << "after resize(2): ";
for (int x : vec) std::cout << x << " ";
std::cout << "\n";
// 2. deque - 双端队列
std::deque<int> dq = {1, 2, 3};
dq.push_front(0); // 前端插入
dq.push_back(4); // 后端插入
dq.pop_front(); // 前端删除
dq.pop_back(); // 后端删除
// 3. list - 双向链表
std::list<int> lst = {1, 2, 3};
// 链表特有操作
lst.push_front(0);
lst.pop_front();
// 合并、拼接
std::list<int> lst2 = {4, 5, 6};
lst.merge(lst2);
lst.sort(); // 链表排序(成员函数)
lst.unique(); // 删除连续重复元素
// 4. forward_list - 单向链表
std::forward_list<int> flist = {1, 2, 3};
// 只有push_front,没有push_back
flist.push_front(0);
flist.pop_front();
// 5. array - 固定大小数组
std::array<int, 3> arr = {1, 2, 3};
// array特有:fill方法
arr.fill(7);
std::cout << http://www.chinasem.cn"array after fill(7): ";
for (int x : arr) std::cout << x << " ";
std::cout << "\n";
}
3. 关联容器特有操作
#include <iostream>
#include <set>
#include <map>
#include <unordered_set>
#include <unordered_map>
void associative_container_specific() {
std::cout << "\n=== 关联容器特有操作 ===\n";
// 1. set/multiset
std::set<int> s = {3, 1, 4, 1, 5, 9};
std::multiset<int> ms = {3, 1, 4, 1, 5, 9};
// 插入
auto result = s.insert(2);
std::cout << "插入2: " << (result.second ? "成功" : "失败") << "\n";
// 查找
auto it = s.find(3);
if (it != s.end()) {
std::cout << "找到3\n";
}
// 计数
std::cout << "set中1的个数: " << s.count(1) << "\n";
std::cout << "multiset中1的个数: " << ms.count(1) << "\n";
// 范围查找
auto lower = s.lower_bound(2); // 第一个>=2的元素
auto upper = s.upper_bound(5); // 第一个>5的元素
auto range = s.equal_range(4); // 等于4的范围
// 2. map/multimap
std::map<std::string, int> m = {{"apple", 1}, {"banana", 2}};
std::multimap<std::string, int> mm = {{"apple", 1}, {"apple", 2}};
// 插入
m.insert({"orange", 3});
m.emplace("pear", 4);
// 访问(map特有)
std::cout << "apple: " << m["apple"] << "\n";
std::cout << "orange: " << m.at("orange") << "\n";
// 3. 无序容器特有操作
std::unordered_set<int> us = {1, 2, 3, 4, 5};
std::unordered_map<std::string, int> um = {{"a", 1}, {"b", 2}};
// 桶接口
std::cout << "桶数量: " << us.bucket_count() << "\n";
std::cout << "负载因子: " << us.load_factor() << "\n";
// 重新哈希
us.rehash(20);
us.reserve(100);
// 遍历桶
for (size_t i = 0; i < us.bucket_count(); ++i) {
std::cout << "桶" << i << "有" << us.bucket_size(i) << "个元素\n";
}
}
4. 容器适配器特有操作
#include <iostream>
#include <stack>
#include <queue>
#include <vector>
#include <deque>
void container_adapter_specific() {
std::cout << "\n=== 容器适配器特有操作 ===\n";
// 1. stack - 栈
std::stack<int> st;
st.push(1);
st.push(2);
st.push(3);
std::cout << "栈顶: " << st.top() << "\n";
st.pop();
std::cout << "弹出后栈顶: " << st.top() << "\n";
// 2. queue - 队列
std::queue<int> q;
q.push(1);
q.push(2);
q.push(3);
std::cout << "队首: " << q.front() << "\n";
std::cout << "队尾: " << q.back() << "\n";
q.pop();
std::cout << "弹出后队首: " << q.front() << "\n";
// 3. priority_queue - 优先队列
std::priority_queue<int> pq;
pq.push(3);
pq.push(1);
pq.push(4);
pq.push(2);
std::cout << "优先队列: ";
while (!pq.empty()) {
std::cout << pq.top() << " ";
pq.pop();
}
std::cout << "\n";
// 自定义比较器的优先队列(最小堆)
std::priority_queue<int, std::vector<int>, std::greater<int>> min_pq;
min_pq.push(3);
min_pq.push(1);
min_pq.push(4);
std::cout << "最小堆优先队列: ";
while (!min_pq.empty()) {
std::cout << min_pq.top() << " ";
min_pq.pop();
}
std::cout << "\n";
}
四、实用工具函数
1. 迭代器工具
#include <iostream>
#include <vector>
#include <list>
#include <iterator>
#include <algorithm>
void iterator_utilities() {
std::cout << "\n=== 迭代器工具 ===\n";
std::vector<int> vec = {1, 2, 3, 4, 5};
// 1. 迭代器适配器
// back_inserter
std::vector<int> dest;
std::copy(vec.begin(), vec.end(), std::back_inserter(dest));
// front_inserter(需要支持push_front的容器)
std::list<int> lst;
std::copy(vec.begin(), vec.end(), std::front_inserter(lst));
// inserter(在指定位置插入)
std::vector<int> vec2;
std::copy(vec.begin(), vec.end(), std::inserter(vec2, vec2.begin()));
// 2. 流迭代器
std::cout << "使用ostream_iterator输出: ";
std::copy(vec.begin(), vec.end(), std::ostream_iterator<int>(std::cout, " "));
std::cout << "\n";
// 3. 反向迭代器
std::cout << "反向输出: ";
std::copy(vec.rbegin(), vec.rend(), std::ostream_iterator<int>(std::cout, " "));
std::cout << "\n";
// 4. 移动迭代器(C++11)
std::vector<std::string> strings = {"hello", "world"};
std::vector<std::string> strings2;
// 使用移动迭代器转移资源
strings2.insert(strings2.begin(),
std::make_move_iterator(strings.begin()),
std::make_move_iterator(strings.end()));
std::cout << "移动后原vector大小: " << strings.size() << "\n";
std::cout << "目标vector大小: " << strings2.size() << "\n";
}
2. 算法库中的容器操作
#include <iostream>
#include <vector>
#include <algorithm>
#include <numeric>
#include <execution> // C++17 并行算法
void algorithm_utilities() {
std::cout << "\n=== 算法库工具 ===\n";
std::vector<int> vec = {5, 3, 1, 4, 2, 6, 8, 7};
// 1. 排序和查找
std::sort(vec.begin(), vec.end());
std::cout << "排序后: ";
for (int x : vec) std::cout << x << " ";
std::cout << "\n";
bool found = std::binary_search(vec.begin(), vec.end(), 4);
std::cout << "二分查找4: " << (found ? "找到" : "未找到") << "\n";
// 2. 数值算法
int sum = std::accumulate(vec.begin(), vec.end(), 0);
int product = std::accumulate(vec.begin(), vec.end(), 1, std::multiplies<int>());
std::cout << "和: " << sum << "\n";
std::cout << "积: " << product << "\n";
// 3. 变换
std::vector<int> transformed;
std::transform(vec.begin(), vec.end(), std::back_inserter(transformed),
[](int x) { return x * 2; });
// 4. 过滤
std::vector<int> filtered;
std::copy_if(vec.begin(), vec.end(), std::back_inserter(filtered),
[](int x) { return x % 2 == 0; });
// 5. 并行算法(C++17)
std::vector<int> large_vec(1000000);
std::iota(large_vec.begin(), large_vec.end(), 0);
// 并行排序
std::sort(std::execution::par, large_vec.begin(), large_vec.end());
// 6. 范围算法(C++20概念)
#if __cplusplus >= 202002L
std::ranges::sort(vec);
#endif
}
3. 视图和范围(C++20)
#if __cpluspYRFddlus >= 202002L
#include <iostream>
#include <vector>
#include <ranges>
#include <algorithm>
void ranges_and_views() {
std::cout << "\n=== C++20 范围和视图 ===\n";
std::vector<int> vec = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
// 1. 范围算法
std::ranges::sort(vec);
auto found = std::ranges::find(vec, 5);
// 2. 视图(惰性求值)
auto even_squares = vec
| std::views::filter([](int x) { return x % 2 == 0; })
| std::views::transform([](int x) { return x * x; });
std::cout << "偶数的平方: ";
for (int x : even_squares) {
std::cout << x << " ";
}
std::cout << "\n";
// 3. 更多视图操作
// 取前5个元素
auto first5 = vec | std::views::take(5);
// 跳过前3个元素
auto skip3 = vec | std::views::drop(3);
// 反转
auto reversed = vec | std::views::reverse;
// 4. 管道操作符组合
auto result = vec
| std::views::filter([](int x) { return x > 5; })
| std::views::transform([](int x) { return x * 2; })
| std::views::take(3);
std::cout << "管道操作结果: ";
for (int x : result) {
std::cout << x << " ";
}
std::cout << "\n";
}
#endif
五、类型转换和类型特性
1. 类型转换工具
#include <iostream>
#include <vector>
#include <list>
#include <set>
#include <type_traits>
void type_conversion_utilities() {
std::cout << "\n=== 类型转换工具 ===\n";
// 1. 使用std::common_type获取公共类型
using type1 = std::common_type_t<int, double>;
using type2 = std::common_type_t<int, float, double>;
std::cout << "int和double的公共类型: " << typeid(type1).name() << "\n";
std::cout << "int, float, double的公共类型: " << typeid(type2).name() << "\n";
// 2. 使用decay去掉引用和const
using decayed = std::decay_t<const int&>;
std::cout << "const int& decay后: " << typeid(decayed).name() << "\n";
// 3. 判断类型特性
std::cout << "vector<int>是容器: "
<< std::boolalpha
<< std::is_same_v<decltype(std::begin(std::vector<int>{})),
typename std::vector<int>::iterator> << "\n";
// 4. 条件类型选择
constexpr bool use_vector = true;
using Container = std::conditional_t<use_vector,
std::vector<int>,
std::list<int>>;
Container c = {1, 2, 3};
std::cout << "使用的容器类型: " << typeid(c).name() << "\n";
}
2. 智能指针与容器
#include <iostream>
#include <vector>
#include <memory>
#include <algorithm>
void smart_pointers_with_containers() {
std::cout << "\n=== 智能指针与容器 ===\n";
// 1. 容器存储unique_ptr
std::vector<std::unique_ptr<int>> vec;
vec.push_back(std::make_unique<int>(10));
vec.push_back(std::make_unique<int>(20));
vec.push_back(std::make_unique<int>(30));
// 遍历unique_ptr容器
for (const auto& ptr : vec) {
std::cout << *ptr << " ";
}
std::cout << "\n";
// 2. 容器存储shared_ptr
std::vector<std::shared_ptr<int>> shared_vec;
auto p1 = std:China编程:make_shared<int>(100);
auto p2 = p1; // 共享所有权
shared_vec.push_back(p1);
shared_vec.push_back(p2);
std::cout << "引用计数: " << p1.use_count() << "\n";
// 3. 使用weak_ptr避免循环引用
struct Node {
std::weak_ptr<Node> next;
int value;
Node(int v) : value(v) {}
};
auto node1 = std::make_shared<Node>(1);
auto node2 = std::make_shared<Node>(2);
node1->next = node2;
node2->next = node1; // weak_ptr不会增加引用计数
}
六、性能优化技巧
1. 高效容器操作
#include <iostream>
#include <vector>
#include <list>
#include <chrono>
#include <algorithm>
void performance_optimization() {
std::cout << "\n=== 性能优化技巧 ===\n";
const size_t N = 1000000;
// 1. 预分配内存
{
std::vector<int> v1;
auto start = std::chrono::high_resolution_clock::now();
for (size_t i = 0; i < N; ++i) {
v1.push_back(i);
}
auto end = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
std::cout << "无预分配插入" << N << "个元素: " << duration.count() << " ms\n";
}
{
std::vector<int> v2;
v2.reserve(N);
auto start = std::chrono::high_resolution_clock::now();
for (size_t i = 0; i < N; ++i) {
v2.push_back(i);
}
auto end = std::chrono::high_resolution_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
std::cout << "预分配后插入" << N << "个元素: " << duration.count() << " ms\n";
}
// 2. 使用emplace代替insert
std::vector<std::pair<int, std::string>> v;
// 低效:创建临时对象然后复制
v.push_back(std::make_pair(1, "one"));
// 高效:直接在容器中构造
v.emplace_back(2, "two");
// 3. 使用移动语义
std::string large_string = "这是一个很长的字符串...";
std::vector<std::string> strings;
strings.push_back(std::move(large_string)); // 移动而非复制
// 4. 选择合适的算法
std::vector<int> data(N);
std::iota(data.begin(), data.end(), 0);
// 线性查找
auto start = std::chrono::high_resolution_clock::now();
auto it1 = std::find(data.begin(), data.end(), N/2);
auto end = std::chrono::high_resolution_clock::now();
auto duration1 = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
// 二分查找(需要先排序)
std::sort(data.begin(), data.end());
start = std::chrono::high_resolution_clock::now();
bool found = std::binary_search(data.begin(), data.end(), N/2);
end = std::chrono::high_resolution_clock::now();
auto duration2 = std::chrono::duration_cast<std::chrono::microseconds>(end - start);
std::cout << "线性查找时间: " << duration1.count() << " s\n";
std::cout << "二分查找时间: " << duration2.count() << " s\n";
}
2. 内存池和自定义分配器
#include <iostream>
#include <vector>
#include <memory>
#include <list>
// 简单的内存池分配器
template<typename T>
class SimplePoolAllocator {
public:
using value_type = T;
SimplePoolAllocator() = default;
template<typename U>
SimplePoolAllocator(const SimplePoolAllocator<U>&) {}
T* allocate(std::size_t n) {
std::cout << "分配 " << n << " 个 " << typChina编程eid(T).name() << " 对象\n";
return static_cast<T*>(::operator new(n * sizeof(T)));
}
void deallocate(T* p, std::size_t n) {
std::cout << "释放 " << n << " 个 " << typeid(T).name() << " 对象\n";
::operator delete(p);
}
};
template<typename T, typename U>
bool operator==(const SimplePoolAllocator<T>&, const SimplePoolAllocator<U>&) {
return true;
}
template<typename T, typename U>
bool operator!=(const SimplePoolAllocator<T>&, const SimplePoolAllocator<U>&) {
return false;
}
void custom_allocator_example() {
std::cout << "\n=== 自定义分配器示例 ===\n";
// 使用自定义分配器的vector
std::vector<int, SimplePoolAllocator<int>> vec;
vec.push_back(1);
vec.push_back(2);
vec.push_back(3);
std::cout << "vector元素: ";
for (int x : vec) std::cout << x << " ";
std::cout << "\n";
// 使用自定义分配器的list
std::list<int, SimplePoolAllocator<int>> lst;
lst.push_back(10);
lst.push_back(20);
lst.push_back(30);
}
七、综合示例:学生成绩管理系统
#include <iostream>
#include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <numeric>
#include <string>
#include <iomanip>
struct Student {
int id;
std::string name;
std::map<std::string, double> scores; // 科目 -> 分数
double average_score() const {
if (scores.empty()) return 0.0;
double sum = std::accumulate(scores.begin(), scores.end(), 0.0,
[](double acc, const auto& pair) { return acc + pair.second; });
return sum / scores.size();
}
void add_score(const std::string& subject, double score) {
scores[subject] = score;
}
};
class GradeBook {
private:
std::vector<Student> students;
std::set<std::string> subjects;
public:
// 添加学生
void add_student(int id, const std::string& name) {
students.push_back({id, name, {}});
}
// 添加成绩
void add_score(int student_id, const std::string& subject, double score) {
auto it = std::find_if(students.begin(), students.end(),
[student_id](const Student& s) {
return s.id == student_id;
});
if (it != students.end()) {
it->add_score(subject, score);
subjects.insert(subject);
}
}
// 计算每个学生的平均分
std::map<int, double> calculate_averages() const {
std::map<int, double> result;
for (const auto& student : students) {
result[student.id] = student.average_score();
}
return result;
}
// 按平均分排序学生
std::vector<std::pair<int, double>> sort_by_average() const {
auto averages = calculate_averages();
std::vector<std::pair<int, double>> sorted(averages.begin(), averages.end());
std::sort(sorted.begin(), sorted.end(),
[](const auto& a, const auto& b) {
return a.second > b.second; // 降序
});
return sorted;
}
// 计算每科平均分
std::map<std::string, double> calculate_subject_averages() const {
std::map<std::string, double> result;
for (const auto& subject : subjects) {
double sum = 0.0;
int count = 0;
for (const auto& student : students) {
auto it = student.scores.find(subject);
if (it != student.scores.end()) {
sum += it->second;
++count;
}
}
if (count > 0) {
result[subject] = sum / count;
}
}
return result;
}
// 生成报告
void generate_report() const {
std::cout << "\n=== 学生成绩报告 ===\n";
// 学生成绩表
std::cout << "\n学生成绩详情:\n";
std::cout << std::setw(5) << "ID"
<< std::setw(10) << "姓名";
for (const auto& subject : subjects) {
std::cout << std::setw(10) << subject;
}
std::cout << std::setw(10) << "平均分\n";
for (const auto& student : students) {
std::couphpt << std::setw(5) << student.id
<< std::setw(10) << student.name;
for (const auto& subject : subjects) {
auto it = student.scores.find(subject);
if (it != student.scores.end()) {
std::cout << std::setw(10) << std::fixed
<< std::setprecision(2) << it->second;
} else {
std::cout << std::setw(10) << "N/A";
}
}
std::cout << std::setw(10) << std::fixed
<< std::setprecision(2) << student.average_score() << "\n";
}
// 按平均分排序
std::cout << "\n按平均分排名:\n";
auto sorted = sort_by_average();
for (size_t i = 0; i < sorted.size(); ++i) {
std::cout << i + 1 << ". 学生ID: " << sorted[i].first
<< ", 平均分: " << sorted[i].second << "\n";
}
// 科目平均分
std::cout << "\n科目平均分:\n";
auto subject_averages = calculate_subject_averages();
for (const auto& [subject, avg] : subject_averages) {
std::cout << subject << ": " << avg << "\n";
}
}
};
int main() {
GradeBook gradebook;
// 添加学生
gradebook.add_student(1, "张三");
gradebook.add_student(2, "李四");
gradebook.add_student(3, "王五");
// 添加成绩
gradebook.add_score(1, "数学", 85.5);
gradebook.add_score(1, "英语", 90.0);
gradebook.add_score(1, "物理", 88.0);
gradebook.add_score(2, "数学", 78.0);
gradebook.add_score(2, "英语", 85.0);
gradebook.add_score(2, "物理", 92.5);
gradebook.add_score(3, "数学", 92.0);
gradebook.add_score(3, "英语", 88.5);
gradebook.add_score(3, "物理", 95.0);
// 生成报告
gradebook.generate_report();
return 0;
}
总结对比表
| 特性 | Python容器 | C++ STL容器 |
|---|---|---|
| 类型系统 | 动态类型,容器可包含任意类型 | 静态类型,容器元素类型固定 |
| 内存管理 | 自动垃圾回收 | 手动或RAII管理 |
| 性能控制 | 有限,依赖解释器优化 | 细粒度控制,可优化到硬件级 |
| 转换灵活性 | 灵活,自动类型转换 | 严格,需要显式转换 |
| 迭代方式 | 简单for循环 | 迭代器模式 |
| 算法集成 | 内置方法较少,依赖标准库函数 | 丰富的算法库,与容器深度集成 |
| 并发安全 | GIL限制,部分操作原子 | 默认非线程安全,需要外部同步 |
| 内存布局 | 隐藏细节 | 明确控制(连续/链式) |
最佳实践
选择合适容器:
vector:默认选择,缓存友好list/forward_list:频繁插入删除deque:两端操作频繁set/map:需要排序或快速查找unordered_set/unordered_map:只需要快速查找,不关心顺序
性能优化:
- 预分配vector内存
- 使用
emplace代替insert - 优先使用算法库而非手写循环
- 考虑使用移动语义
现代C++特性:
- 使用范围for循环(C++11)
- 使用结构化绑定(C++17)
- 使用概念和范围(C++20)
- 使用智能指针管理资源
错误处理:
- 使用
at()进行边界检查 - 检查迭代器有效性
- 使用异常处理资源错误
- 使用
C++容器系统提供了强大的功能和性能控制,但需要更多的类型安全和内存管理考虑。掌握这些工具可以编写出高效、可靠的C++代码。
总结
到此这篇关于Python容器转换与共有函数的文章就介绍到这了,更多相关Python容器转换与共有函数内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!
这篇关于Python容器转换与共有函数举例详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!