AI大模型系列:自然语言处理,从规则到统计的演变

2024-04-30 23:04

本文主要是介绍AI大模型系列:自然语言处理,从规则到统计的演变,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI大模型系列文章目录

  1. 文明基石,文字与数字的起源与演变
  2. 自然语言处理,从规则到统计的演变

自然语言处理,从规则到统计的演变


  自然语言处理(Natural Language Processing,NLP)是人工智能的一个重要分支,主要研究如何让计算机理解、解释和生成人类语言。从自然语言处理的字面上来看,最重要的是“语言”二字,语言则是通过语法规则将一个个毫无联系的文字、数字和字母串联起来的。

  文字的出现是因为咱们祖先为了记录所见所闻和所思所想(传送门),咱们的祖先再将文字、字母和数字进行信道编码就成为了我们日常使用的语言。简单来讲,我们把一个要表达的意思,通过中文的一句话表达出来,就是在头脑中用中文的编码方式对其进行编码,然后得到一串汉字。对方如果懂得中文,在接收到之后就可以在头脑中使用中文的解码方式来解码,进而获得说话人想要表达的信息。

  世界上存在的每一种语言都有自己独有的语法规则,从而都拥有自己独有的编解算法,即这就是语言在数学上的本质。

人类还是机器?

  1946年,冯·诺伊曼体系的现代计算机出现以后,计算机在很多领域的很多工作做得都比人还好。既然如此,当时的科学家们就提出了计算机能不能懂得自然语言的课题,由此开启了自然语言处理研究的漫漫长路。

  最早提出机器智能设想的是,计算机科学之父的阿兰·图灵(Alan Mathison Turing,1912年6月23日—1954年6月7日),没错这是电影《模仿游戏》中的那个阿兰·图灵(传送门)。1950年他在《思想》杂志上发表了一篇题为“计算的机器和智能”的论文,并在论文中提出了一种验证机器是否有智能的方法:让人和机器进行交流,如果人无法判断自己交流的对象是人还是机器,那么就说明这个机器拥有了智能。这个方法被后人称为“图灵测试”,自此拉开了自然语言处理的序幕。

  自然语言处理发展虽然经过几十年的发展,但基本上可分为语言语法规则、数学模式统计和深度学习这么几个阶段。

探索

  时间回到1950年代到1970年代,当时的学术界对人工智能和自然语言处理的统一认识就是:要让机器完成翻译或者语音识别等只有人类才能做的事情,就必须先让计算机理解自然语言,而要做到这一点就必须让计算机拥有类似人类这样的智能。

  之所以会这样的认为,是因为咱们的大脑在解决问题或者学习技能时,首先会寻找与要解决或学习事物类似的事物进行模仿研究,进而完成仿制。正如有人认为怀特兄弟发明飞机仅仅是通过模仿鸟儿飞行,但是殊不知怀特兄弟成功发明飞机靠的不是仿生学而是空气动力学。同样在自然语言处理早期咱们的科学家也就走了弯路,企图使用仿生学来让计算机拥有处理语言的能力。

  基于上述共识科学家在分析语句和获取语义上花费了大量的功夫,并在1954年,乔治城大学和IBM合作开发了第一个机器翻译系统,这个机器翻译系统的底层原理就是通过分析语句、获取语义然后使用语法规则来处理语言,并且其运行几乎依赖于手工编写的规则来解析和处理语言。
image.png
  此阶段虽然有不少的研究成果,但是整体的研究成果乏善可陈。因为世界上语言众多,哪怕只是覆盖一种语言的语法规则的工作量也是巨大的,并且还存在方言、多义性和上下文的问题。自此当时的科学家渐渐地丧失了信心,自然语言发展也进入了蛰伏期。

破局

  1970年代基于规则的句法分析走到了尽头,但是自然语言处理的研究并没有因此停滞不前,历史的齿轮再一次转到,佛里德里克·贾里尼克(Frederick Jelinek)和他领导的IBM华生实验室(T.J.Watson)摒弃使用语法规则来解决语音识别问题,开始转而使用基于统计的方法,一下子就将IBM的语音识别率从70%提升到了90%,同时语音识别的规模也从几百单词上升到了几万单词,这就表示语音识别有从实验室走向实际应用的可能,同时也表示在自然语言处理上有了新的研究方向。

  虽然贾里尼克使用统计学的方法在自然语言处理上取得了突破,但是碍于当时算力不足和顽固派的阻挠整体发展还是相当的缓慢。虽然在1988年,IBM的彼得·布朗(Peter Brown)等人提出了基于统计的机器翻译方法,同样也碍于算力不足和没有足够强大的模型从而没有得到突破。

  1990年代统计方法开始成为自然语言处理的主流方法,并在1990年美国计算语言学会(ACL)成立了。同时在隐马尔可夫模型的加持,推动了自然语言处理研究发展进入了快车道。1993年,第一个基于统计的机器翻译系统IBM Model 1发布。这个时期的自然语言处理系统开始使用大量语料库进行训练,提高系统的准确性和鲁棒性。

  隐马尔可夫模型被任务是解决大多数自然语言处理问题最为快速、有效的方法,在成功地解决了复杂的语音识别、机器翻译等问题。最关键的是它并不是一个复杂的数学模型,理解和实现的难度都不大。

  2000年-2010年这十年深度学习崛起,并开始在自然语言处理中崭露头角。2001年,神经概率语言模型(Neural Probabilistic Language Model)被提出,为后来的深度学习在自然语言处理中的应用奠定了基础。并经过多年的研究发展,2018年谷歌又一次打出了王炸—BERT(Bidirectional Encoder Representations from Transformers)模型刷新了多个自然语言处理任务的记录。此后自然语言处理领域继续快速发展,各种预训练模型如GPT、RoBERTa、XLNet等不断刷新纪录。

  同时,自然语言处理开始与其他领域如计算机视觉、语音识别等结合,形成了多模态学习的趋势。此外,自然语言处理技术开始在工业界得到广泛应用,如智能客服、机器翻译、情感分析等。


一键三连,让我的信心像气球一样膨胀!

这篇关于AI大模型系列:自然语言处理,从规则到统计的演变的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/950147

相关文章

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

Python之变量命名规则详解

《Python之变量命名规则详解》Python变量命名需遵守语法规范(字母开头、不使用关键字),遵循三要(自解释、明确功能)和三不要(避免缩写、语法错误、滥用下划线)原则,确保代码易读易维护... 目录1. 硬性规则2. “三要” 原则2.1. 要体现变量的 “实际作用”,拒绝 “无意义命名”2.2. 要让

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

深入浅出Java中的Happens-Before核心规则

《深入浅出Java中的Happens-Before核心规则》本文解析Java内存模型中的Happens-Before原则,解释其定义、核心规则及实际应用,帮助理解多线程可见性与有序性问题,掌握并发编程... 目录前言一、Happens-Before是什么?为什么需要它?1.1 从一个问题说起1.2 Haht