在Ignite中使用k-最近邻(k-NN)分类算法

2024-04-30 12:58

本文主要是介绍在Ignite中使用k-最近邻(k-NN)分类算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在本系列前面的文章中,简单介绍了一下Ignite的线性回归算法,下面会尝试另一个机器学习算法,即k-最近邻(k-NN)分类。该算法基于对象k个最近邻中最常见的类来对对象进行分类,可用于确定类成员的关系。

一个适合k-NN分类的数据集是鸢尾花数据集,它可以很容易地通过UCI网站获得。

鸢尾花数据集由150个样本组成,来自3种不同种类的鸢尾花各有50朵(Iris Setosa, Iris Versicolour和Iris Virginica)。以下四个特征可供每个样本使用:

  • 萼片长度(cm)
  • 萼片宽度(cm)
  • 花瓣长度(cm)
  • 花瓣宽度(cm)

下面会创建一个模型,利用这四个特征区分不同的物种。

首先,要获取原始数据并将其拆分成训练数据(60%)和测试数据(40%)。然后再次使用Scikit-learn来执行这个任务,下面修改一下前一篇文章中使用的代码,如下:

from sklearn import datasets
import pandas as pd# Load Iris dataset.
iris_dataset = datasets.load_iris()
x = iris_dataset.data
y = iris_dataset.target# Split it into train and test subsets.
from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=23)# Save train set.
train_ds = pd.DataFrame(x_train, columns=iris_dataset.feature_names)
train_ds["TARGET"] = y_train
train_ds.to_csv("iris-train.csv", index=False, header=None)# Save test set.
test_ds = pd.DataFrame(x_test, columns=iris_dataset.feature_names)
test_ds["TARGET"] = y_test
test_ds.to_csv("iris-test.csv", index=False, header=None)

当训练和测试数据准备好之后,就可以写应用了,本文的算法是:

  1. 读取训练数据和测试数据;
  2. 在Ignite中保存训练数据和测试数据;
  3. 使用训练数据拟合k-NN模型;
  4. 将模型应用于测试数据;
  5. 确定模型的准确性。

读取训练数据和测试数据

需要读取两个有5列的CSV文件,一个是训练数据,一个是测试数据,5列分别为:

  1. 萼片长度(cm)
  2. 萼片宽度(cm)
  3. 花瓣长度(cm)
  4. 花瓣宽度(cm)
  5. 花的种类(0:Iris Setosa,1:Iris Versicolour,2:Iris Virginica)

通过下面的代码,可以从CSV文件中读取数据:

private static void loadData(String fileName, IgniteCache<Integer, IrisObservation> cache)throws FileNotFoundException {Scanner scanner = new Scanner(new File(fileName));int cnt = 0;while (scanner.hasNextLine()) {String row = scanner.nextLine();String[] cells = row.split(",");double[] features = new double[cells.length - 1];for (int i = 0; i < cells.length - 1; i++)features[i] = Double.valueOf(cells[i]);double flowerClass = Double.valueOf(cells[cells.length - 1]);cache.put(cnt++, new IrisObservation(features, flowerClass));}
}

该代码简单地一行行的读取数据,然后对于每一行,使用CSV的分隔符拆分出字段,每个字段之后将转换成double类型并且存入Ignite。

将训练数据和测试数据存入Ignite

前面的代码将数据存入Ignite,要使用这个代码,首先要创建Ignite存储,如下:

IgniteCache<Integer, IrisObservation> trainData = getCache(ignite, "IRIS_TRAIN");
IgniteCache<Integer, IrisObservation> testData = getCache(ignite, "IRIS_TEST");
loadData("src/main/resources/iris-train.csv", trainData);
loadData("src/main/resources/iris-test.csv", testData);

getCache()的实现如下:

private static IgniteCache<Integer, IrisObservation> getCache(Ignite ignite, String cacheName) {CacheConfiguration<Integer, IrisObservation> cacheConfiguration = new CacheConfiguration<>();cacheConfiguration.setName(cacheName);cacheConfiguration.setAffinity(new RendezvousAffinityFunction(false, 10));IgniteCache<Integer, IrisObservation> cache = ignite.createCache(cacheConfiguration);return cache;
}

使用训练数据拟合k-NN分类模型

数据存储之后,可以像下面这样创建训练器:

KNNClassificationTrainer trainer = new KNNClassificationTrainer();

然后拟合训练数据,如下:

KNNClassificationModel mdl = trainer.fit(ignite,trainData,(k, v) -> v.getFeatures(),     
// Feature extractor.(k, v) -> v.getFlowerClass())  
// Label extractor..withK(3).withDistanceMeasure(new EuclideanDistance()).withStrategy(KNNStrategy.WEIGHTED);

Ignite将数据保存为键-值(K-V)格式,因此上面的代码使用了值部分,目标值是Flower类,特征在其它列中。将k的值设为3,代表3种。对于距离测量,可以有几个选择,如欧几里德、汉明或曼哈顿,在本例中使用欧几里德。最后要指定是使用SIMPLE算法还是使用WEIGHTED k-NN算法,在本例中使用WEIGHTED。

将模型应用于测试数据

下一步,就可以用训练好的分类模型测试测试数据了,可以这样做:

int amountOfErrors = 0;
int totalAmount = 0;try (QueryCursor<Cache.Entry<Integer, IrisObservation>> cursor = testData.query(new ScanQuery<>())) {for (Cache.Entry<Integer, IrisObservation> testEntry : cursor) {IrisObservation observation = testEntry.getValue();double groundTruth = observation.getFlowerClass();double prediction = mdl.apply(new DenseLocalOnHeapVector(observation.getFeatures()));totalAmount++;if (groundTruth != prediction)amountOfErrors++;System.out.printf(">>> | %.0f\t\t\t | %.0f\t\t\t|\n", prediction, groundTruth);}System.out.println(">>> -----------------------------");System.out.println("\n>>> Absolute amount of errors " + amountOfErrors);System.out.printf("\n>>> Accuracy %.2f\n", (1 - amountOfErrors / (double) totalAmount));
}

确定模型的准确性

下面,就可以通过对测试数据中的真实分类和模型进行的分类进行对比,来确认模型的真确性。

代码运行之后,总结如下:

>>> Absolute amount of errors 2
>>> Accuracy 0.97

因此,Ignite能够将97%的测试数据正确地分类为3个不同的种类。

总结

Apache Ignite提供了一个机器学习算法库。通过k-NN分类示例,可以看到创建模型、测试模型和确定准确性的简单性。

在机器学习系列的下一篇中,将研究另一种机器学习算法

这篇关于在Ignite中使用k-最近邻(k-NN)分类算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/948931

相关文章

Golang interface{}的具体使用

《Golanginterface{}的具体使用》interface{}是Go中可以表示任意类型的空接口,本文主要介绍了Golanginterface{}的具体使用,具有一定的参考价值,感兴趣的可以了... 目录一、什么是 interface{}?定义形China编程式:二、interface{} 有什么特别的?✅

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

windows和Linux安装Jmeter与简单使用方式

《windows和Linux安装Jmeter与简单使用方式》:本文主要介绍windows和Linux安装Jmeter与简单使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows和linux安装Jmeter与简单使用一、下载安装包二、JDK安装1.windows设

Spring 缓存在项目中的使用详解

《Spring缓存在项目中的使用详解》Spring缓存机制,Cache接口为缓存的组件规范定义,包扩缓存的各种操作(添加缓存、删除缓存、修改缓存等),本文给大家介绍Spring缓存在项目中的使用... 目录1.Spring 缓存机制介绍2.Spring 缓存用到的概念Ⅰ.两个接口Ⅱ.三个注解(方法层次)Ⅲ.

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

C#使用MQTTnet实现服务端与客户端的通讯的示例

《C#使用MQTTnet实现服务端与客户端的通讯的示例》本文主要介绍了C#使用MQTTnet实现服务端与客户端的通讯的示例,包括协议特性、连接管理、QoS机制和安全策略,具有一定的参考价值,感兴趣的可... 目录一、MQTT 协议简介二、MQTT 协议核心特性三、MQTTNET 库的核心功能四、服务端(BR

使用@Cacheable注解Redis时Redis宕机或其他原因连不上继续调用原方法的解决方案

《使用@Cacheable注解Redis时Redis宕机或其他原因连不上继续调用原方法的解决方案》在SpringBoot应用中,我们经常使用​​@Cacheable​​注解来缓存数据,以提高应用的性能... 目录@Cacheable注解Redis时,Redis宕机或其他原因连不上,继续调用原方法的解决方案1

java中XML的使用全过程

《java中XML的使用全过程》:本文主要介绍java中XML的使用全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录什么是XML特点XML作用XML的编写语法基本语法特殊字符编写约束XML的书写格式DTD文档schema文档解析XML的方法​​DOM解析XM

使用Java实现Navicat密码的加密与解密的代码解析

《使用Java实现Navicat密码的加密与解密的代码解析》:本文主要介绍使用Java实现Navicat密码的加密与解密,通过本文,我们了解了如何利用Java语言实现对Navicat保存的数据库密... 目录一、背景介绍二、环境准备三、代码解析四、核心代码展示五、总结在日常开发过程中,我们有时需要处理各种软

使用Nginx配置文件服务器方式

《使用Nginx配置文件服务器方式》:本文主要介绍使用Nginx配置文件服务器方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 为什么选择 Nginx 作为文件服务器?2. 环境准备3. 配置 Nginx 文件服务器4. 将文件放入服务器目录5. 启动 N