阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理

本文主要是介绍阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理

文章目录

  • 阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理
    • 简介
    • 环境部署
      • 下载源码
      • 安装环境
      • 下载模型
    • 测试一下
    • 看看效果
    • 模型转onnx
    • 测试一下生成的onnx模型
    • 看看效果
    • C++ 推理

简介

DDColor是一种基于深度学习的图像上色技术,它利用卷积神经网络(CNN)对黑白图像进行上色处理。该模型通常包含一个编码器和一个解码器,编码器提取图像的特征,解码器则根据这些特征生成颜色。DDColor模型能够处理多种类型的图像,并生成自然且逼真的颜色效果。它在图像编辑、电影后期制作以及历史照片修复等领域有广泛的应用。

环境部署

下载源码

git clone https://github.com/piddnad/DDColor.git

安装环境

conda create -n ddcolor python=3.9
conda activate ddcolor
pip install -r requirements.txt
python3 setup.py develop
pip install modelscope
pip install onnx
pip install onnxruntime

下载模型

这里下载
或者运行下面的脚本下载:

from modelscope.hub.snapshot_download import snapshot_download
model_dir = snapshot_download('damo/cv_ddcolor_image-colorization', cache_dir='./modelscope')
print('model assets saved to %s'%model_dir)
#模型会被下载到modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt

测试一下

import argparse
import cv2
import numpy as np
import os
from tqdm import tqdm
import torch
from basicsr.archs.ddcolor_arch import DDColor
import torch.nn.functional as Fclass ImageColorizationPipeline(object):def __init__(self, model_path, input_size=256, model_size='large'):self.input_size = input_sizeif torch.cuda.is_available():self.device = torch.device('cuda')else:self.device = torch.device('cpu')if model_size == 'tiny':self.encoder_name = 'convnext-t'else:self.encoder_name = 'convnext-l'self.decoder_type = "MultiScaleColorDecoder"if self.decoder_type == 'MultiScaleColorDecoder':self.model = DDColor(encoder_name=self.encoder_name,decoder_name='MultiScaleColorDecoder',input_size=[self.input_size, self.input_size],num_output_channels=2,last_norm='Spectral',do_normalize=False,num_queries=100,num_scales=3,dec_layers=9,).to(self.device)else:self.model = DDColor(encoder_name=self.encoder_name,decoder_name='SingleColorDecoder',input_size=[self.input_size, self.input_size],num_output_channels=2,last_norm='Spectral',do_normalize=False,num_queries=256,).to(self.device)self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))['params'],strict=False)self.model.eval()@torch.no_grad()def process(self, img):self.height, self.width = img.shape[:2]# print(self.width, self.height)# if self.width * self.height < 100000:#     self.input_size = 256img = (img / 255.0).astype(np.float32)orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)# resize rgb image -> lab -> get grey -> rgbimg = cv2.resize(img, (self.input_size, self.input_size))img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device)# (1, 2, self.height, self.width)output_ab = self.model(tensor_gray_rgb).cpu()# resize ab -> concat original l -> rgboutput_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0)output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1)output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)output_img = (output_bgr * 255.0).round().astype(np.uint8)return output_imgdef main():parser = argparse.ArgumentParser()parser.add_argument('--model_path', type=str,default='pretrain/net_g_200000.pth')parser.add_argument('--input_size', type=int,default=512, help='input size for model')parser.add_argument('--model_size', type=str,default='large', help='ddcolor model size')args = parser.parse_args()colorizer = ImageColorizationPipeline(model_path=args.model_path, input_size=args.input_size, model_size=args.model_size)img = cv2.imread("./down.jpg")image_out = colorizer.process(img)cv2.imwrite("./downout.jpg", image_out)if __name__ == '__main__':main()
python test.py  --model_path=./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt

看看效果

在这里插入图片描述

在这里插入图片描述
效果看起来非常的nice!

模型转onnx

import argparse
import cv2
import numpy as np
import os
from tqdm import tqdm
import torch
from basicsr.archs.ddcolor_arch import DDColor
import torch.nn.functional as Fclass ImageColorizationPipeline(object):def __init__(self, model_path, input_size=256, model_size='large'):self.input_size = input_sizeif torch.cuda.is_available():self.device = torch.device('cuda')else:self.device = torch.device('cpu')if model_size == 'tiny':self.encoder_name = 'convnext-t'else:self.encoder_name = 'convnext-l'self.decoder_type = "MultiScaleColorDecoder"if self.decoder_type == 'MultiScaleColorDecoder':self.model = DDColor(encoder_name=self.encoder_name,decoder_name='MultiScaleColorDecoder',input_size=[self.input_size, self.input_size],num_output_channels=2,last_norm='Spectral',do_normalize=False,num_queries=100,num_scales=3,dec_layers=9,).to(self.device)else:self.model = DDColor(encoder_name=self.encoder_name,decoder_name='SingleColorDecoder',input_size=[self.input_size, self.input_size],num_output_channels=2,last_norm='Spectral',do_normalize=False,num_queries=256,).to(self.device)print(model_path)self.model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu'))['params'],strict=False)self.model.eval()@torch.no_grad()def process(self, img):self.height, self.width = img.shape[:2]# print(self.width, self.height)# if self.width * self.height < 100000:#     self.input_size = 256img = (img / 255.0).astype(np.float32)orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)# resize rgb image -> lab -> get grey -> rgbimg = cv2.resize(img, (self.input_size, self.input_size))img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device)output_ab = self.model(tensor_gray_rgb).cpu()  # (1, 2, self.height, self.width)# resize ab -> concat original l -> rgboutput_ab_resize = F.interpolate(output_ab, size=(self.height, self.width))[0].float().numpy().transpose(1, 2, 0)output_lab = np.concatenate((orig_l, output_ab_resize), axis=-1)output_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)output_img = (output_bgr * 255.0).round().astype(np.uint8)    return output_img@torch.no_grad()def expirt_onnx(self, img):self.height, self.width = img.shape[:2]img = (img / 255.0).astype(np.float32)orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)# resize rgb image -> lab -> get grey -> rgbimg = cv2.resize(img, (self.input_size, self.input_size))img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)img_gray_rgb = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)tensor_gray_rgb = torch.from_numpy(img_gray_rgb.transpose((2, 0, 1))).float().unsqueeze(0).to(self.device)mymodel = self.model.to('cpu')tensor_gray_rgb = tensor_gray_rgb.to('cpu')onnx_save_path = "color.onnx"torch.onnx.export(mymodel,  # 要导出的模型tensor_gray_rgb,  # 模型的输入onnx_save_path,  # 导出的文件路径export_params=True,  # 是否将训练参数导出opset_version=12,  # 导出的ONNX的操作集版本do_constant_folding=True,  # 是否执行常量折叠优化input_names=['input'],  # 输入张量的名称output_names=['output'],  # 输出张量的名称dynamic_axes={'input': {0: 'batch_size'}, 'output': {0: 'batch_size'}})returndef main():parser = argparse.ArgumentParser()parser.add_argument('--model_path', type=str, default='pretrain/net_g_200000.pth')parser.add_argument('--input_size', type=int, default=512, help='input size for model')parser.add_argument('--model_size', type=str, default='large', help='ddcolor model size')args = parser.parse_args()colorizer = ImageColorizationPipeline(model_path=args.model_path, input_size=args.input_size, model_size=args.model_size)img = cv2.imread("./down.jpg")image_out = colorizer.expirt_onnx(img)# image_out = colorizer.process(img)# cv2.imwrite("./downout.jpg", image_out)if __name__ == '__main__':main()
python model2onnx.py  --model_path=./modelscope/damo/cv_ddcolor_image-colorization/pytorch_model.pt

测试一下生成的onnx模型

import onnxruntime
import cv2
import numpy as npdef colorize_image(input_image_path, output_image_path, model_path):input_image = cv2.imread(input_image_path)img = (input_image / 255.0).astype(np.float32)orig_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]  # (h, w, 1)img = cv2.resize(img, (512, 512))img_l = cv2.cvtColor(img, cv2.COLOR_BGR2Lab)[:, :, :1]img_gray_lab = np.concatenate((img_l, np.zeros_like(img_l), np.zeros_like(img_l)), axis=-1)input_blob = cv2.cvtColor(img_gray_lab, cv2.COLOR_LAB2RGB)# Change data layout from HWC to CHWinput_blob = np.transpose(input_blob, (2, 0, 1))input_blob = np.expand_dims(input_blob, axis=0)  # Add batch dimension# Initialize ONNX Runtime Inference Sessionsession = onnxruntime.InferenceSession(model_path)# Perform inferenceoutput_blob = session.run(None, {'input': input_blob})[0]# Post-process the outputoutput_blob = np.squeeze(output_blob)  # Remove batch dimension# Separate ab channels# Change data layout from CHW to HWCoutput_ab = output_blob.transpose((1, 2, 0))# Resize to match input image sizeoutput_ab = cv2.resize(output_ab, (input_image.shape[1], input_image.shape[0]))output_lab = np.concatenate((orig_l, output_ab), axis=-1)# Convert LAB to BGRoutput_bgr = cv2.cvtColor(output_lab, cv2.COLOR_LAB2BGR)output_bgr = output_bgr*255# Save the colorized imagecv2.imwrite(output_image_path, output_bgr)# Define paths
input_image_path = 'down.jpg'
output_image_path = 'downout2.jpg'
model_path = 'color.onnx'# Perform colorization
colorize_image(input_image_path, output_image_path, model_path)
python testonnx.py

看看效果

在这里插入图片描述
嗯,模型没有问题,下面开始用c++推理

C++ 推理

#pragma once
#include <iostream>
#include <assert.h>
#include <vector>
#include <onnxruntime_cxx_api.h>
#include <opencv2/opencv.hpp>namespace LIANGBAIKAI_BASE_MODEL_NAME
{class ONNX_DDcolor{public:ONNX_DDcolor() : session(nullptr){};virtual ~ONNX_DDcolor() = default;/*初始化* @param model_path 模型* @param gpu_id 选择用那块GPU*/void Init(const char *model_path, int gpu_id = 0){env = Ort::Env(ORT_LOGGING_LEVEL_ERROR, "ONNX_DDcolor");Ort::SessionOptions session_options;// 使用五个线程执行op,提升速度session_options.SetIntraOpNumThreads(5);session_options.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL);if (gpu_id >= 0){OrtCUDAProviderOptions cuda_option;cuda_option.device_id = gpu_id;session_options.AppendExecutionProvider_CUDA(cuda_option);}session = Ort::Session(env, model_path, session_options);return;}/**执行模型推理* @param src : 输入图* @param inputid : 输入id* @param outputid : 输出的id* @return 输出结果图*/cv::Mat Run(cv::Mat src, unsigned inputid = 0, unsigned outputid = 0, bool show_log = false){cv::Mat img;src.convertTo(img, CV_32FC3, 1.0/255.0);// 拷贝图片并将图片由 BGR 转为 LAB,分离出L通道cv::Mat orig_lab;cv::cvtColor(img, orig_lab, cv::COLOR_BGR2Lab);cv::Mat orig_l = orig_lab.clone();cv::extractChannel(orig_lab, orig_l, 0); // 分离出 L 通道cv::resize(img, img, cv::Size(512, 512));//将图片由RGB转为Lab,然后将ab通道用同尺寸的0矩阵代替,最后再将图片转回rgbcv::Mat img_lab;cv::cvtColor(img, img_lab, cv::COLOR_BGR2Lab);std::vector<cv::Mat> lab_planes;cv::split(img_lab, lab_planes);cv::Mat img_gray_lab = cv::Mat::zeros(img_lab.rows, img_lab.cols, CV_32FC3);std::vector<cv::Mat> img_channels = {lab_planes[0], cv::Mat::zeros(img_lab.rows, img_lab.cols, CV_32F), cv::Mat::zeros(img_lab.rows, img_lab.cols, CV_32F)};cv::merge(img_channels, img_gray_lab);// Convert LAB to RGBcv::Mat input_blob;cv::cvtColor(img_gray_lab, input_blob, cv::COLOR_Lab2RGB);//将input_blob送入神经网络输入,进行推理int64_t H = input_blob.rows;int64_t W = input_blob.cols;cv::Mat blob;cv::dnn::blobFromImage(input_blob, blob, 1.0 , cv::Size(W, H), cv::Scalar(0, 0, 0), false, true);// 创建tensorsize_t input_tensor_size = blob.total();std::vector<float> input_tensor_values(input_tensor_size);// overwrite input dimsstd::vector<int64_t> input_node_dims = GetInputOrOutputShape("input", inputid, show_log);input_node_dims[0] = 1;input_node_dims[2] = W;input_node_dims[3] = H;for (size_t i = 0; i < input_tensor_size; ++i){input_tensor_values[i] = blob.at<float>(i);// std::cout <<" " << input_tensor_values[i] ;}// std::cout << std::endl;// 查看输入的shapeif (show_log){std::cout << "shape:";for (auto &i : input_node_dims){std::cout << " " << i;}std::cout << std::endl;std::cout << "input_tensor_size: " << input_tensor_size << std::endl;}auto memory_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);auto input_tensor = Ort::Value::CreateTensor<float>(memory_info, input_tensor_values.data(), input_tensor_size, input_node_dims.data(), input_node_dims.size());std::string input_name = GetInputOrOutputName("input", inputid, show_log);std::string output_name = GetInputOrOutputName("output", outputid, show_log);const char *inputname[] = {input_name.c_str()};   // 输入节点名const char *outputname[] = {output_name.c_str()}; // 输出节点名std::vector<Ort::Value> output_tensor = session.Run(Ort::RunOptions{nullptr}, inputname, &input_tensor, 1, outputname, 1);if (show_log){// 显示有几个输出的结果std::cout << "output_tensor_size: " << output_tensor.size() << std::endl;}// 获取output的shapeOrt::TensorTypeAndShapeInfo shape_info = output_tensor[0].GetTensorTypeAndShapeInfo();// 获取output的dimsize_t dim_count = shape_info.GetDimensionsCount();if (show_log){std::cout << dim_count << std::endl;}auto shape = shape_info.GetShape();if (show_log){// 显示输出的shape信息std::cout << "shape: ";for (auto &i : shape){std::cout << i << " ";}std::cout << std::endl;}// 取output数据float *f = output_tensor[0].GetTensorMutableData<float>();int output_width = shape[2];int output_height = shape[3];int size_pic = output_width * output_height;cv::Mat fin_img;std::vector<cv::Mat> abChannels(2);abChannels[0] = cv::Mat(output_height, output_width, CV_32FC1, f);abChannels[1] = cv::Mat(output_height, output_width, CV_32FC1, f + size_pic);merge(abChannels, fin_img);cv::Mat output_ab;cv::resize(fin_img, output_ab, cv::Size(src.cols, src.rows));// Concatenate L and ab channelsstd::vector<cv::Mat> output_channels = {orig_l, output_ab};cv::Mat output_lab;cv::merge(output_channels, output_lab);// Convert LAB to BGRcv::Mat output_bgr;cv::cvtColor(output_lab, output_bgr, cv::COLOR_Lab2BGR);output_bgr.convertTo(output_bgr, CV_8UC3, 255);return output_bgr;}private:/*获取模型的inputname 或者 outputname* @param input_or_output  选择要获取的是input还是output* @param id 选择要返回的是第几个name* @param show_log 是否打印信息* @return 返回name*/std::string GetInputOrOutputName(std::string input_or_output = "input", unsigned id = 0, bool show_log = false){size_t num_input_nodes = session.GetInputCount();size_t num_output_nodes = session.GetOutputCount();if (show_log){// 显示模型有几个输入几个输出std::cout << "num_input_nodes:" << num_input_nodes << std::endl;std::cout << "num_output_nodes:" << num_output_nodes << std::endl;}std::vector<const char *> input_node_names(num_input_nodes);std::vector<const char *> output_node_names(num_output_nodes);Ort::AllocatorWithDefaultOptions allocator;std::string name;if (input_or_output == "input"){Ort::AllocatedStringPtr input_name_Ptr = session.GetInputNameAllocated(id, allocator);name = input_name_Ptr.get();}else{auto output_name_Ptr = session.GetOutputNameAllocated(id, allocator);name = output_name_Ptr.get();}if (show_log){std::cout << "name:" << name << std::endl;}return name;}/*获取模型的input或者output的shape信息* @param input_or_output  选择要获取的是input还是output* @param id 选择要返回的是第几个shape* @param show_log 是否打印信息* @return 返回shape信息*/std::vector<int64_t> GetInputOrOutputShape(std::string input_or_output = "input", unsigned id = 0, bool show_log = false){std::vector<int64_t> shape;if (input_or_output == "input"){Ort::TypeInfo type_info = session.GetInputTypeInfo(id);auto tensor_info = type_info.GetTensorTypeAndShapeInfo();// 得到输入节点的数据类型ONNXTensorElementDataType type = tensor_info.GetElementType();if (show_log){std::cout << "input_type: " << type << std::endl;}shape = tensor_info.GetShape();if (show_log){std::cout << "intput shape:";for (auto &i : shape){std::cout << " " << i;}std::cout << std::endl;}}else{Ort::TypeInfo type_info_out = session.GetOutputTypeInfo(id);auto tensor_info_out = type_info_out.GetTensorTypeAndShapeInfo();// 得到输出节点的数据类型ONNXTensorElementDataType type_out = tensor_info_out.GetElementType();if (show_log){std::cout << "output type: " << type_out << std::endl;}// 得到输出节点的输入维度 std::vector<int64_t>shape = tensor_info_out.GetShape();if (show_log){std::cout << "output shape:";for (auto &i : shape){std::cout << " " << i;}std::cout << std::endl;}}return shape;}mutable Ort::Session session;Ort::Env env; };}

测试没有问题,成功!

这篇关于阿里开源黑白图片上色算法DDColor的部署与测试并将模型转onnx后用c++推理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/947461

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

C++ 函数 strftime 和时间格式示例详解

《C++函数strftime和时间格式示例详解》strftime是C/C++标准库中用于格式化日期和时间的函数,定义在ctime头文件中,它将tm结构体中的时间信息转换为指定格式的字符串,是处理... 目录C++ 函数 strftipythonme 详解一、函数原型二、功能描述三、格式字符串说明四、返回值五

C++作用域和标识符查找规则详解

《C++作用域和标识符查找规则详解》在C++中,作用域(Scope)和标识符查找(IdentifierLookup)是理解代码行为的重要概念,本文将详细介绍这些规则,并通过实例来说明它们的工作原理,需... 目录作用域标识符查找规则1. 普通查找(Ordinary Lookup)2. 限定查找(Qualif

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可