Hadoop+Spark大数据技术(微课版)曾国荪、曹洁版思维导图第五次作业 第五章 Scala基础与编程

本文主要是介绍Hadoop+Spark大数据技术(微课版)曾国荪、曹洁版思维导图第五次作业 第五章 Scala基础与编程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  • 第五次作业

    • 1. 简述Scala语言的基本特性

      • 1. 面向对象:Scala是一种完全面向对象的语言。其每一种数据类型都是一个对象,这使得它具有非常统一的模型。

      • 2. 函数式编程:Scala同时支持函数式编程,它拥有高阶函数、闭包、不可变数据结构、递归等函数式编程的关键特性。

      • 3. 扩展性:Scala的语法非常灵活,允许开发者自定义运算符和语法糖。也支持模式匹配、类型推断和匿名函数等高级特性,这些都为编写简洁、高效的代码提供了可能。此外,Scala的语法允许在单个文件中定义类、对象、函数等,使得代码组织更加灵活。

      • 4. 并发性:Scala支持Actor模型(处理并发的轻量级机制)。通过Actor,可以编写出线程安全的、易于管理的并发代码,有效地利用多核处理器资源。

      • 5. 可以和Java混编:Scala运行在Java虚拟机(JVM)上,并兼容Java的API。可以直接使用Java库,或者在Scala代码中调用Java方法,反之亦然。这为已有的Java项目提供了无缝迁移到Scala的可能,也使得Scala成为一个非常实用的工具,可以在不完全重构的情况下逐步引入新的编程范式。

    • 2. 简述Scala语言的9种基本数据类型。 说明关键字Unit、Nothing、Any的含义。

      • Unit无返回值,通常用于不返回任何内容的方法。

      • Nothing是任何其他类型的子类,用于表示永远不会正常终止的程序部分。

      • Any是所有其他类型的超类(父类)

    • 3. 简述Scala中数组、列表、集合、元组、映射的名称及特点。

      • 数组(Array):固定大小的集合,元素类型相同,性能较好但不支持动态修改大小。

      • 列表(List):不可变的序列集合,适合于递归处理和模式匹配,但头部插入和删除效率低。

      • 集合(Set):无序且不重复元素的集合,分为可变和不可变两种。

      • 元组(Tuple):固定长度、不同类型的元素组合,最多支持22个元素,常用于同时携带多种类型信息。

      • 映射(Map):键值对的集合,键唯一,分为可变和不可变两种,适合快速查找。

    • 4. 举例说明匿名函数和高阶函数的含义,

      • 匿名函数

        • 也称为Lambda函数。箭头“=>”定义,箭头的左边是参数列表,箭头的右边是表达式,表达式的值即匿名函数的返回值。 在代码中直接定义的函数,没有具体的函数名。通常用于一些简单的、一次性的操作。

          • val sum = (x: Int, y: Int) => x + y

          • val result = sum(3, 5) /

          • / result = 8

      • 高阶函数

        • 高阶函数是指使用其他函数作为参数,或者返回一个函数作为结果的函数。

          • val numbers = List(1, 2, 3, 4)

          • val doubled = numbers.map(x => x * 2)

          • // doubled = List(2, 4, 6, 8)

    • 5. 阅读、分析下列程序段,并给出运行结果。

      (1)       var v = 0for (i <- 1 to 9) {for (j <- 1 to i) {v = i*jprint(f"$j%s*$i%s=$v%-3s")}println()}
      (2)          val a = Array("Hello Spark","Hello Hadoop","Hello Scala")val b = a.flatMap(_.split(" ")).map((_,1)).groupBy(t => t._1).map(t => (t._1,t._2.length)).toList.sortBy(t => t._2).reverseb.foreach(x => println(x))
      (3)       class Person(val namec:String,val agec:Int) {var name:String = namecvar age:Int = agecdef printPerson() : Unit = {printf(f"name:$name%8s, age:$age%-4d")}}object Test2 {def main(args:Array[String]):Unit = {val x = new Person("zhang",21)x.printPerson()}}
      (4)        val a = List(("a",85),("b",95),("c",75),("a",95))a.groupBy(_._1)
      (5)       val s = List("Spark","Python","Hadoop","HBase")s.foreach(e => print(e+" "))print(s.count(e => e.length == 5))
      (1) 九九乘法表
      这段代码使用嵌套循环打印九九乘法表。外层循环控制行数,内层循环控制每行打印的乘法算式。
      运行结果:
      ```
      1*1=1   
      1*2=2   2*2=4   
      1*3=3   2*3=6   3*3=9   
      ...
      1*9=9   2*9=18  3*9=27  ... 8*9=72  9*9=81  
      ```(2) 单词计数
      这段代码统计字符串数组中每个单词出现的次数,并按出现次数降序排列。
      步骤解析:
      1. `flatMap(_.split(" "))`:将每个字符串按空格分割成单词列表,并合并成一个新的列表。
      2. `map((_,1))`:将每个单词映射成一个元组,元组的第一个元素是单词本身,第二个元素是 1。
      3. `groupBy(t => t._1)`:按照单词分组。
      4. `map(t => (t._1,t._2.length))`:统计每个单词出现的次数。
      5. `toList.sortBy(t => t._2).reverse`:将结果转换为列表,并按出现次数降序排列。
      运行结果:
      ```
      (Hello,3)
      (Spark,1)
      (Scala,1)
      (Hadoop,1)
      ```(3) 类定义与对象创建
      这段代码定义了一个 `Person` 类,并创建了一个 `Person` 对象,然后调用该对象的 `printPerson` 方法打印信息。
      运行结果:
      ```
      name:zhang    , age:21  
      ```(4) 按第一个元素分组
      这段代码将列表 `a` 按照元组的第一个元素分组。
      结果:
      ```
      Map(a -> List((a,85), (a,95)), b -> List((b,95)), c -> List((c,75)))
      ```(5) 字符串操作
      这段代码遍历字符串列表 `s` 并打印每个元素,然后统计长度为 5 的字符串个数。
      运行结果:
      ```
      Spark Python Hadoop HBase 2
      ``` 
      

这篇关于Hadoop+Spark大数据技术(微课版)曾国荪、曹洁版思维导图第五次作业 第五章 Scala基础与编程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/945474

相关文章

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

GSON框架下将百度天气JSON数据转JavaBean

《GSON框架下将百度天气JSON数据转JavaBean》这篇文章主要为大家详细介绍了如何在GSON框架下实现将百度天气JSON数据转JavaBean,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录前言一、百度天气jsON1、请求参数2、返回参数3、属性映射二、GSON属性映射实战1、类对象映

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We

MySQL中查询和展示LONGBLOB类型数据的技巧总结

《MySQL中查询和展示LONGBLOB类型数据的技巧总结》在MySQL中LONGBLOB是一种二进制大对象(BLOB)数据类型,用于存储大量的二进制数据,:本文主要介绍MySQL中查询和展示LO... 目录前言1. 查询 LONGBLOB 数据的大小2. 查询并展示 LONGBLOB 数据2.1 转换为十