R语言机器学习与大数据可视化暨Python文本挖掘与自然语言处理核心技术研修

本文主要是介绍R语言机器学习与大数据可视化暨Python文本挖掘与自然语言处理核心技术研修,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中国通信工业协会通信和信息技术创新人才培养工程项目办公室

通人办〔2017〕 第45号


“R语言机器学习与大数据可视化”暨“Python文本挖掘与自然语言处理”核心技术高级研修班的通知

各有关单位:

为了响应国家大数据战略加快建设数字中国,加强数据科学的创新发展和技术应用,打造大数据专业技术人才队伍,满足行业对人工智能、机器学习、深度学习等相关领域高端人才的迫切需求,我单位将于2018年1月23日至26日在上海、1月25日至28日在厦门分别举办“R语言机器学习与大数据可视化”、“Python文本挖掘与自然语言处理”核心技术高级研修班;课程目标、特点、教学大纲及师资安排等具体内容详见附件。 


 

附件:

一、课程对象

各高等院校大数据相关学科、计算机、软件、信息管理、统计、电子商务、金融、工商管理、数理统计专业等科研、教学带头人,骨干教师、博士生、硕士生,机器学习、数据挖掘、文本挖掘及自然语言处理技术的爱好者与潜在研究者。


二、时间与地点

2018年1月23日~26日  上  海

2018年1月25日~28日   厦  门


三、课程目标及特点   

  1. 通过实际的案例分析与流程演示,熟悉机器学习、大数据可视化、文本挖掘与自然语言处理等核心技术并学会如何将相应的技术运用到自己的实际工作中;

  2. 学会将数据挖掘的能力从有限的结构化数据延伸到非结构化的海量文字材料,全面提升个人的数据挖掘与分析应用能力;

  3. 通过紧密结合应用实例,针对工作中存在的疑难问题进行分析讲解和专题讨论,进而有效提升学员解决科研及教学中实际问题的能力同时提升其从数据角度去思考的能力;

  4. 采用理论知识+案例示范+练习讨论的workshop教学模式,从典型案例入手;既适合零基础的初学者,也适合经验丰富的操作者;

  5. 全栈式的数据科学及大数据人才培养体系,额外提供价值4000元共350G、75课时的python机器学习、数据挖掘、网络爬虫与文本挖掘最新教学视频及课件PPT,以协助高校开展数据科学与大数据专业建设,协助教师开展相关课程教学与科研;

  6. 通过流微信平台建立与授课专家的长期的答疑联系,提供即时的在线技术咨询;


四、课程内容

模块一:R语言机器学习与大数据可视化技术

第一天

第1讲:数据可视化(统计图形)

1.  数据可视化简介

2.  R语言基础作图

3.  ggplot2简介

4.  常见统计图形

第2讲:数据可视化(动态可视化)

1.  R的动态可视化框架

2.  Echarts简介

3.  Shiny与动态报告

4.  案例1:做一个动态可视化的小系统

第二天

第3讲:数据挖掘(数据处理与关联规则)

1.  数据处理与dplyr

2.  数据的清洗与转换

3.  关联规则简介

4.  案例2:零售店数据的挖掘

第4讲:数据挖掘(聚类和分类)

1.  数据挖掘与机器学习

2.  聚类和分类简介

3.  层次聚类分析

4.  K-Means 聚类分析

5.  基于密度的聚类

6.  案例3:互联网行为分析

第三天

第5讲:数据挖掘(分类算法)

1.  逻辑斯蒂回归

2.  混淆矩阵与交叉验证

3.  决策树

4.  随机森林

5.  Boosting

6.  案例4:足球比赛数据的机器学习

7.  分析与讨论

第6讲:数据挖掘(神经网络和深度学习)

1.  人工智能简介

2.  感知机和神经网络

3.  图像分析简介

4.  深度学习与卷积神经网络

5.  案例5:训练图像识别模型

6.  课程总结与讨论

模块二:Python文本挖掘与自然语言处理技术

第一天

第1讲:自然语言处理及文本挖掘介绍

1.自然语言处理简介

2.文本挖掘简介

3.自然语言处理与python

4.自然语言处理相关工具概述及对比

第2讲:python自然语言处理环境及基础语法

1.Anaconda套件

2.基本数据结构(列表/字符串/字典)

3.基本语法(条件/循环/函数/类/模块)

4.Jupyter  Notebook基本使用

5.python在自然语言处理中的应用

第3讲:文本数据处理

1.  基础包 numpy

2.  绘图与可视化 matplotlib与 seaborn

3.  自然语言处理包NLTK

4.  文本语料与词汇资源

5.  文本数据获取之爬虫

6.  文本预处理

第二天

第4讲:文本分类

1.  分类与标注词汇

2.  文本分类简介

3.  各类文本分类模型

4.  为语言模式建模

5.  案例分析

第5讲:文本信息提取

1.  信息提取

2.  分块

3.  开发和评估分块器

4.  语言结构中的递归

5.  命名实体识别

6.  关系抽取

7,  案例演示

第6讲:文法分析

1.  句子结构分析

2.  文法特征

3.  处理特征结构

4.  扩展基于特征的文法

第三天

第7讲:基于传统机器学习模型的文本分析技术基础

1.  文本挖掘全流程概述

2.  TextBlob文本处理库介绍

3.  中文分词介绍(jieba)

4.  词云介绍

5.  案例演示

第8讲:基于传统机器学习模型的文本分析技术应用

1.  文本挖掘预处理技术

2.  文本特征处理

3.  文本聚类

4.  主题模型

5.  案例演示

第9讲:基于深度学习的文本处理技术

1.  深度学习简介

2.  词向量技术

3.  RNN基本概念

4.  LSTM简介

5.  LSTM语言模型的实现

6.  案例:利用LSTM实现文本分类

第10讲:基于seq2seq模型的自然语言处理应用(选修)

1.  seq2seq模型简介

2.  Encoder-Decoder  结构

3.  seq2seq模型原理

4.  seq2seq模型的应用

5.  案例:基于seq2seq模型的机器翻译


五、颁发证书

学员经考核合格可获得国家工信部全国通信和信息技术创新人才培养工程《大数据挖掘与分析应用高级工程师》职业技术水平证书。该证表明持有者已通过相关考核,具备相应的专业知识和专业技能,并作为聘用、任职、定级和晋升的重要参考依据,全国通用。


六、拟邀师资

尹老师,数据科学家,浙江大学物理学博士,浙江某高校深度学习研究中心负责人,深度学习领域一线实战专家,兼任某网络科技上市公司大数据总监,承担30多个企业数据挖掘项目,受聘担任多家大数据教学机构主讲教师,开发多套python机器学习、网络爬虫与文本挖掘系列课程,10+年软件开发数据产品经验,熟悉R\Python\Javascript等多种编程语言,目前研究集中在推荐系统、文本挖掘、神经网络等深度学习领域,具有丰富的统计建模、数据挖掘、大数据技术教学经验,先后为中国交通银行,平安保险公司等数十家知名机构主讲python机器学习课程。


李老师,博士,毕业于北京大学,浙江大学软件学院兼职教授、华东师范大学硕士研究生导师,台北商业大学业界专业教师,曾任Mango Solutions中国区数据总监,主导数十个R语言数据挖掘与分析应用工程项目, 2003年从事R语言相关研究,擅长R语言的工程开发与分析建模,是 Rweibo、Rwordseg、tmcn等 R 包的作者,著有《数据科学中的R语言》,翻译了《R语言核心技术手册》、《机器学习与R语言》,撰写过大量R语言的基础和高级应用类文章,从事R语言数据挖掘分析培训多年,为国内多所科研院所及知名企业主讲R语言机器学习内训课程,探索出一套以案例讲解带动理论理解和软件操作熟悉的方法。


七、费用标准

每个模块参会费均为3980元/人(含专家授课费、教材考试费、证书申报、场地等),食宿统一安排,费用自理。


八、联系方式

联系电话: 18611038557         微  信: 18611038557

联 系 人: 宋 老 师            邮  箱: 1843626486@qq.com

(扫码咨询)


全国R语言与python数据科学高级研修班报名回执表

(经研究我单位选派以下同志参加此次学习)

单位名称


发票抬头


发票税号


发票内容

□1、培训费          □2、会议费         □3、会 务  费

缴款方式

□1、现  金          □2、刷  卡         □3、对公转账   

参会人数:_    ___      人

参会费用: _      ____元

 

参会

人员

名单

 

 

 

姓 名

职 务

手 机

电 子 邮 箱

















住宿安排

□1、住          □2、不住         □3、待定

住宿标准

□1、双人标间    □2、单间         □3、待定







注:请确定参加人员从速报名,培训报到前7日我们将以电子邮件的方式给您发送《报到通知》,告知具体培训地点、乘车路线等事宜。

这篇关于R语言机器学习与大数据可视化暨Python文本挖掘与自然语言处理核心技术研修的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/943438

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

C语言中%zu的用法解读

《C语言中%zu的用法解读》size_t是无符号整数类型,用于表示对象大小或内存操作结果,%zu是C99标准中专为size_t设计的printf占位符,避免因类型不匹配导致错误,使用%u或%d可能引发... 目录size_t 类型与 %zu 占位符%zu 的用途替代占位符的风险兼容性说明其他相关占位符验证示

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3