数据结构——二叉树的顺序存储(堆)(C++实现)

2024-04-28 07:36

本文主要是介绍数据结构——二叉树的顺序存储(堆)(C++实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

数据结构——二叉树的顺序存储(堆)(C++实现)

  • 二叉树可以顺序存储的前提
  • 堆的定义
  • 堆的分类
    • 大根堆
    • 小根堆
  • 整体结构把握
  • 两种调整算法
    • 向上调整算法
      • 递归版本
    • 非递归版本
    • 向下调整算法
    • 非递归版本
  • 向上调整算法和向下调整算法的比较

我们接着来看二叉树:

二叉树可以顺序存储的前提

完全二叉树完全符合顺序存储的前提:

完全二叉树:顺序存储二叉树最适合应用于完全二叉树。完全二叉树是一种特殊的二叉树,除最后一层外,每一层都被完全填满,并且所有结点尽可能集中在左边。由于其结构特性,完全二叉树的结点与数组下标之间存在着直接的数学映射关系,**使得每个结点可以按照固定规则(如左孩子为2i,右孩子为2i+1)**在数组中找到其相应的位置。这种映射保证了数组的存储空间得以充分利用,没有浪费。

顺序存储的二叉树我们称为

堆的定义

堆是一种特殊的树形数据结构,通常以数组的形式进行顺序存储。堆具有以下关键性质:

  1. 完全二叉树结构
    堆是一个完全二叉树或近乎完全二叉树。这意味着除了可能的最后一层外,其他各层都是完全填充的,并且最后一层的所有结点都尽可能靠左排列。这种结构非常适合用数组来表示,因为完全二叉树的结点与数组下标之间存在直接的数学映射关系,使得每个结点可以高效地通过下标访问。

  2. 堆序性质
    堆分为两种主要类型:最大堆和最小堆。无论哪种类型,堆都遵循特定的堆序性质:

  • 大根堆:每个结点的值都大于或等于其子结点的值。即对于任意结点 i,其值 A[i] 大于等于其左孩子 A[2*i+1] 和右孩子 A[2*i+2] 的值。
  • 小根堆:每个结点的值都小于或等于其子结点的值。即对于任意结点 i,其值 A[i] 小于等于其左孩子 A[2*i+1] 和右孩子 A[2*i+2] 的值。

由于堆的完全二叉树特性和堆序性质,它非常适合使用数组进行顺序存储。具体来说:

  • 数组下标与结点关系

假设数组 A 存储了一个堆,根结点位于下标 0。那么对于任一结点 i,其左孩子、右孩子的下标分别为 2*i + 12*i + 2,而其父结点的下标为 (i - 1) // 2(向下取整)。这种固定的下标关系使得在数组中进行堆的操作(如插入、删除、调整等)变得非常直观和高效。

  • 空间利用率

由于堆是完全或近乎完全二叉树,其存储在数组中时空间利用率较高。即使不是严格的完全二叉树,只要整体结构相对平衡,数组中的空闲位置也相对较少,不会造成过多的存储浪费。

  • 操作复杂度

堆的常见操作(如插入、删除堆顶元素、调整堆等)的时间复杂度通常为 O(log n),这是因为堆的高度与结点数成对数关系。数组的随机访问特性使得这些操作能够在常数时间内定位到相关结点,然后通过递归或迭代方式进行堆结构调整。

因此,堆作为一类满足特定条件的二叉树,其完全二叉树特性、堆序性质以及高效的操作性能,使其非常适合采用数组进行顺序存储。堆常用于实现优先队列、求解Top-K问题、堆排序算法等场景。

堆的分类

大根堆

大根堆是一种特殊的二叉堆,其中每个节点的值都大于或等于其子节点的值。具体地说,对于大根堆中的任意节点 i,其值 A[i] 大于等于其左孩子 A[2*i+1] 和右孩子A[2*i+2]的值。根节点(数组下标为1或0,取决于实现)总是包含堆中的最大值。大根堆常用于实现优先队列,其中队首元素始终为当前最大的元素。
在这里插入图片描述

小根堆

小根堆也是一种特殊的二叉堆,其中每个节点的值都小于或等于其子节点的值。对于小根堆中的任意节点 i,其值 A[i] 小于等于其左孩子 A[2*i+1] 和右孩子 A[2*i+2] 的值。根节点(同样为数组下标为1或0)始终包含堆中的最小值。小根堆同样适用于优先队列的场景,但此时队首元素为当前最小的元素。
在这里插入图片描述

整体结构把握

我们这里用vector作为底层容器来存储数据,这些数据按照顺序排放:

#pragma once
#include<iostream>
#include<vector>template<class T>
//堆的定义
class Heap
{
public:Heap():_size(0){_data.resize(10);}Heap(const size_t& size):_size(0){_data.resize(size + 1);}//插入void insert(const T& data){if(_size > _data.capacity()){_data.resize(2 * _data.size());}_data[++_size] = data;}//是否为空bool empty(){return _size == 0;}//打印堆void printHeap(){for(int i = 1; i < _size + 1; i++){std::cout<< _data[i] << " ";}std::cout << std::endl;}private:std::vector<T> _data; //存放数据size_t _size; //当前数据个数
};

这里注意一下,我的一个数据并没有放在0号位置,而是放在了1号位置,这样方便我们寻找父节点:
在这里插入图片描述
我们可以先测试一下:

#include"heap.h"int main()
{Heap<int> heap;heap.insert(12);heap.insert(23);heap.insert(1);heap.insert(0);heap.insert(24);heap.insert(4);heap.insert(188);heap.insert(9);heap.insert(58);heap.printHeap();return 0;
}

在这里插入图片描述

两种调整算法

向上调整算法

向上调整算法的核心是把每一个结点都当做孩子,去跟自己的父亲比较,如果比自己的父亲大(或者小)交交换数据
在这里插入图片描述

递归版本

递归版本比较好想,我只管我自己和父亲的比较,比较完之后,继续向上比较:

// 向上调整函数(以小根堆为例)
// 输入参数:index - 需要进行调整的子节点索引
void sifUpHeap(const size_t& index)
{// 如果索引小于 1,说明已经到达根节点或无效索引,无需继续调整,直接返回if (index < 1){return;}// 获取当前子节点的父节点索引size_t parentIndex = Parent(index);// 如果子节点索引大于 1(即不是根节点),并且子节点的值小于其父节点的值// 则交换两者,确保父节点的值小于其子节点的值(小根堆性质)if (index > 1 && _data[parentIndex] > _data[index]){std::swap(_data[parentIndex], _data[index]);// 对交换后的新父节点(原子节点)继续进行向上调整,确保整棵子树满足小根堆性质sifUpHeap(parentIndex);}// 返回,完成当前节点的向上调整过程return;
}

但是我们这样只是完成了一个数据的调整,我们要所有的数据进行调整:

    //向上调整算法(以小根堆为例)void sifUpHeap(const size_t& index){if (index < 1){return;}if(index > 1 && _data[Parent(index)] > _data[index]){std::swap(_data[Parent(index)],_data[index]);//接着向上sifUpHeap(Parent(index));}return;}//调整为小根堆void ToMinHeap(){for(int i = 1; i < _size + 1; i++){sifUpHeap(i);}}

在这里插入图片描述

非递归版本

我们也可以不用递归,使用迭代来完成:

// 向上调整函数(非递归版本,以小根堆为例)
// 输入参数:child - 需要进行调整的子节点索引
void sifUpHeap_non(size_t child)
{// 计算当前子节点的父节点索引size_t parent = child / 2;// 循环迭代,直到子节点成为根节点或已满足小根堆性质while (child > 1){// 如果子节点的值小于其父节点的值// 则交换两者,确保父节点的值小于其子节点的值(小根堆性质)if (_data[Parent(child)] > _data[child]){std::swap(_data[Parent(child)], _data[child]);// 更新子节点索引为交换后的父节点索引,准备对新的子节点进行下一轮比较child = parent;// 重新计算父节点索引parent = child / 2;}else{// 子节点已满足小根堆性质,跳出循环,结束调整break;}}
}//调整为小根堆void ToMinHeap(){for(int i = 1; i < _size + 1; i++){sifUpHeap_non(i);}}

向下调整算法

向下调整算法是把所有结点当做父亲结点,去和自己的孩子结点比较,看哪个孩子结点比自己大或小,就交换
在这里插入图片描述向下调整算法有个条件:左右子树必须为堆,因为这个特性,我们向下调整算法得从最后一个有孩子的双亲结点开始:

// 下降调整函数(以小根堆为例)
// 输入参数:index - 需要进行调整的父节点索引
void sifDownHeap(const size_t& index)
{// 计算当前父节点的左孩子索引size_t leftchild = LeftChild(index);// 如果左孩子索引超出了堆的有效范围(即不存在左孩子),说明无需调整,直接返回if (leftchild > _size){return; // 超出范围,无需调整}// 初始化 "miner" 为当前父节点的左孩子索引// "miner" 用于记录待调整子节点中值最小的那个的索引int miner = leftchild;// 比较左孩子与右孩子(如果存在)的值,确定哪个子节点的值更小// 如果右孩子存在且其值小于左孩子,更新 "miner" 为右孩子索引if (index < _size + 1 && _data[leftchild] > _data[leftchild + 1]){miner++;}// 如果当前父节点的值大于其最小子节点(即 "miner" 所指向的子节点)的值// 则交换两者,确保父节点的值小于其子节点的值(小根堆性质)if (_data[miner] < _data[index]){std::swap(_data[miner], _data[index]);// 对交换后的新父节点(原子节点)继续进行向下调整,确保整棵子树满足小根堆性质sifDownHeap(miner);}// 返回,完成当前节点的向下调整过程return;
}//调整为小根堆void ToMinHeap(){// for(int i = 1; i < _size + 1; i++)// {//     sifUpHeap_non(i);// }for(int i = _size / 2 ; i >=1 ; i--) //从最后一个父节点结点开始调整{sifDownHeap(i);}}

在这里插入图片描述

非递归版本

我们也可以用非递归的方式实现:

// 下降调整函数(以小根堆为例)
// 输入参数:parent - 需要进行调整的父节点索引
void sifDownHeap_non(size_t parent)
{// 计算当前父节点的左孩子索引,假定左孩子为待调整子节点中值最小的一个int child = LeftChild(parent);// 循环迭代,直到越界while (child < _size + 1){// 如果右孩子存在且其值小于左孩子,更新 "child" 为右孩子索引// 保持 "child" 指向待调整子节点中值最小的那个if (parent + 1 < _size + 1 && _data[child] > _data[child + 1]){child++;}// 如果当前父节点的值大于其最小子节点(即 "child" 所指向的子节点)的值// 则交换两者,确保父节点的值小于其子节点的值(小根堆性质)if (_data[parent] > _data[child]){std::swap(_data[parent], _data[child]);// 更新父节点索引为交换后的子节点索引,准备对新的子节点进行下一轮比较parent = child;// 重新计算子节点索引,从新的父节点开始child = LeftChild(parent);}else{// 子节点已满足小根堆性质,跳出循环,结束调整break;}}
}//调整为小根堆void ToMinHeap(){// for(int i = 1; i < _size + 1; i++)// {//     sifUpHeap(i);// }for(int i = _size / 2 ; i >=1 ; i--) //从最后一个结点开始调整{sifDownHeap_non(i);}}

在这里插入图片描述

向上调整算法和向下调整算法的比较

向上调整算法(Sift Up)和向下调整算法(Sift Down)是堆数据结构中常用的两种调整方法,它们各有特点和适用场景,无法简单地说哪个更优秀。选择使用哪种调整方法取决于具体的堆操作需求和上下文。下面分别介绍两者的特性及适用场景:

向上调整算法(Sift Up)

  • 用途:通常用于将新插入的元素或被修改的元素调整到堆中的正确位置,使其满足堆性质(大根堆或小根堆)。例如,在插入新元素后,将其放在堆末尾,然后从该位置开始向上调整,确保新元素及其路径上的所有节点满足堆性质。
  • 特点:从堆底部(新元素所在位置或被修改元素所在位置)开始,逐层向上比较父节点与子节点的值,若子节点值更适合堆顶(对于大根堆,子节点值更大;对于小根堆,子节点值更小),则交换二者,直至子节点成为堆顶或已满足堆性质。
  • 优点
  • 适用于插入操作和单元素修改后的调整,因为新元素或被修改元素的初始位置已知,可以直接从该位置开始调整。
  • 调整过程中涉及的节点数量相对较少,时间复杂度为 O(log n),效率较高。
  • 缺点
  • 不适用于堆顶元素被删除后的调整,因为此时需要重新确定堆顶元素,且可能需要对多个子节点进行比较和调整。

向下调整算法(Sift Down)

  • 用途:通常用于删除堆顶元素后重新调整堆,或在构建堆的过程中对整个堆进行调整。例如,在删除堆顶元素后,将堆末尾元素移至堆顶,然后从堆顶开始向下调整,确保所有节点满足堆性质。
  • 特点:从堆顶开始,逐层向下比较父节点与子节点的值,若父节点值更适合堆底(对于大根堆,父节点值更小;对于小根堆,父节点值更大),则交换二者,直至父节点成为堆底或已满足堆性质。
  • 优点
  • 适用于堆顶元素被删除后的调整,因为此时堆顶元素已知,可以直接从该位置开始调整。
  • 在构建堆的过程中,可以从最后一个非叶子节点开始逐个进行向下调整,确保整个堆满足堆性质。
  • 缺点
  • 对于插入操作或单元素修改后的调整,可能需要遍历到堆底才能找到新元素或被修改元素的最终位置,调整过程中涉及的节点数量可能较多。

综上所述,向上调整算法和向下调整算法各有优势,适用于不同的堆操作场景。在实际应用中,根据具体需求选择合适的调整方法,或者结合使用这两种方法,可以有效维护堆数据结构的性质,确保堆操作的高效性。因此,不能简单地说哪个更优秀,而应视具体情况灵活选用。

如果大家阅读完之后还是比较迷糊的话,可以点击这里,这里是我之前写的堆的博客,介绍的更为详细:

https://blog.csdn.net/qq_67693066/article/details/131544172

这篇关于数据结构——二叉树的顺序存储(堆)(C++实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/942653

相关文章

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima