代码随想录算法训练营DAY38|C++动态规划Part.1|动态规划理论基础、509.斐波那契数、70.爬楼梯、746.使用最小花费爬楼梯

本文主要是介绍代码随想录算法训练营DAY38|C++动态规划Part.1|动态规划理论基础、509.斐波那契数、70.爬楼梯、746.使用最小花费爬楼梯,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 动态规划理论基础
    • 什么是动态规划
    • 动态规划的解题步骤
      • DP数组以及下标的含义
      • 递推公式
      • DP数组初始化
      • DP数组遍历顺序
      • 打印DP数组
      • 动态规划五部曲
    • 动态规划应该如何debug
  • 509.斐波那契数
    • 什么是斐波那契数列
    • 动态规划五部曲
      • 确定dp数组下标以及含义
      • 确定递推公式
      • dp数组如何初始化
      • 确定遍历顺序
      • 打印DP数组
    • 代码实现
    • CPP代码
  • 70.爬楼梯
    • 题意分析
    • 动规五部曲
      • 确定dp数组下标以及含义
      • 确定递推公式
      • dp数组如何初始化
      • 确定遍历顺序
      • 打印DP数组
    • 扩展题
    • CPP代码
  • 746.使用最小花费爬楼梯

在这里插入图片描述

动态规划理论基础

什么是动态规划

动态规划(Dynamic Programming, DP),如果某一个问题有很多重叠子问题,这样往往是用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的。

对于刷题来说就抓住一句话:

动规是由前一个状态推导出来的,而贪心是从局部直接选出最优的

动态规划的解题步骤

在全面总结动态规划解题步骤前,同时也是做动态规划类题目之前,我们要先搞明白以下几个问题:

DP数组以及下标的含义

有很多类问题有一个二维dp数组,其中的行、列的含义一定要搞清楚;同理一维dp数组中的值又是什么呢?在写代码前,一定要搞明白这是什么意思。

递推公式

动态规划递推公式仅仅是一部分,而不是只要掌握了递推公式,动规就变得简单了。

DP数组初始化

dp数组如何初始化其实紧贴着dp数组以及下标含义,如果dp数组里是什么,各个维度含义是什么,那dp数组的初始化更加无从谈起了。

DP数组遍历顺序

对于背包类问题,遍历顺序是非常有讲究的,所以每道题一定要弄清他们的遍历顺序。

打印DP数组

如果题目通过不了,首先应该考虑是不是dp数组出了问题,我们应该吧dp数组打印出来看是否符合预期

动态规划五部曲

一定要仔细分析上述的五大问题

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

动态规划应该如何debug

做动规的题目,写代码之前一定要把状态转移在dp数组的上具体情况模拟一遍,心中有数,确定最后推出的是想要的结果

然后再写代码,如果代码没通过就打印dp数组,看看是不是和自己预先推导的哪里不一样。

这样才是一个完整的思考过程,而不是一旦代码出问题,就毫无头绪的东改改西改改,最后过不了,或者说是稀里糊涂的过了

这里给出卡哥写的自我debug的灵魂三问:

  • 这道题目我举例推导状态转移公式了么?
  • 我打印dp数组的日志了么?
  • 打印出来了dp数组和我想的一样么?

509.斐波那契数

力扣题目链

文章链接:509.斐波那契数列

视频链接:手把手带你入门动态规划 | leetcode:509.斐波那契数

状态:迭代法还是会写一写

什么是斐波那契数列

动态规划五部曲

确定dp数组下标以及含义

dp[i]表示第i个斐波那契数值为dp[i]

确定递推公式

斐波那契数的递推公式很明显: d p [ i ] = d p [ i − 1 ] + d p [ i − 2 ] dp[i] = dp[i - 1] + dp[i - 2] dp[i]=dp[i1]+dp[i2]

dp数组如何初始化

斐波那契的初始化也很简单 [ 0 , 1 , 1 , 2 , 3 , 5 , 8 ] [0, 1, 1, 2, 3, 5, 8] [0,1,1,2,3,5,8]

由数学归纳可知: d p [ 0 ] = 0 ; d p [ 1 ] = 1 ; dp[0] = 0; dp[1] = 1; dp[0]=0;dp[1]=1;

在很多题目中,dp数组的初始化往往也依赖于递推公式

确定遍历顺序

本题中,遍历顺序从前向后即可。(有一些题目从后向前遍历;有一些题目两层for循环,其先先后顺序也有说法)

打印DP数组

这个主要是用来debug的

代码实现

vector<int> dp(n+1);
//初始化
dp[0] = 0; dp[1] = 1;
for (i = 2; i <= n; i++)dp[i] = dp[i-1] + dp[i-2];
return dp[n];

对状态进行压缩,只需要维护两个数值就可以了,不需要记录整个序列.代码可以缩减为

int fib(int N){if (N <= 1) return N;int dp[2];dp[0] = 0;dp[1] = 1;for (int i = 2; i <= N; i++){int sum = dp[0] + dp[1];dp[0] = dp[1];dp[1] = sum;}return dp[1];
}

时间复杂度为O(2^n)的递归解法:

int fib(int N){if (N < 2) return N;return fib(N - 1) + fib(N - 2);
}

CPP代码

class Solution {
public:int fib(int N) {if (N <= 1) return N;vector<int> dp(N + 1);dp[0] = 0;dp[1] = 1;for (int i = 2; i <= N; i++) {dp[i] = dp[i - 1] + dp[i - 2];}return dp[N];}
};
//只维护两个数值
class Solution {
public:int fib(int N) {if (N <= 1) return N;int dp[2];dp[0] = 0;dp[1] = 1;for (int i = 2; i <= N; i++) {int sum = dp[0] + dp[1];dp[0] = dp[1];dp[1] = sum;}return dp[1];}
};
//递归
class Solution {
public:int fib(int N) {if (N < 2) return N;return fib(N - 1) + fib(N - 2);}
};

70.爬楼梯

力扣题目链接

文章讲解:70.爬楼梯

视频讲解:带你学透动态规划-爬楼梯|LeetCode:70.爬楼梯)

状态:

题意分析

如果对于一个n阶台阶,每次你可以爬 12 个台阶。有多少种不同的方法可以爬到楼顶。

如果台阶一共只有1阶,一共只有1

如果台阶有2阶,一共有2

如果台阶有3阶,一共有3

如果台阶有4阶,一共有5

本质上,当前台阶有几种方法,主要依赖于前两个状态

其实这就是递推关系。这种递推关系可以用动态规划来解决。

动规五部曲

确定dp数组下标以及含义

dp[i],达到i阶有dp[i]种方法。

确定递推公式

dp[i - 2]表示达到i-2阶有dp[i - 2]种方法

dp[i - 1]表示达到i-1阶有dp[i - 1]种方法

dp[i]表示达到i阶有dp[i]种方法

d p [ i ] = d p [ i − 2 ] + d p [ i − 1 ] dp[i] = dp[i-2]+dp[i-1] dp[i]=dp[i2]+dp[i1]

dp数组如何初始化

从递推公式可以看出,最重要的就是初始化数组的前几位

dp[0] = 1还是dp[0] = 0

因为我们dp[2] = 2,从递推公式出发,dp[0]应该初始化成1。同时题目中也说过,n为正整数

在代码随想录的代码中,是不初始化0的,而是直接初始化dp[2]dp[1]

确定遍历顺序

从前向后遍历即可

打印DP数组

用于debug

其实本质上,从上文论述的规律可以看出,其实本题就是一个斐波那契数列

扩展题

一步可以走m个台阶,爬n阶的楼梯有多少种方法。

词题可以用完全背包的思路来解决。

CPP代码

//还是只维护两个数组
class Solution {
public:int climbStairs(int n) {if (n <= 3) return n;int dp[2];dp[0] = 1; dp[1] = 2;for (int i = 3; i <= n; ++i) {int cur = dp[0] + dp[1];dp[0] = dp[1];dp[1] = cur;}return dp[1];}
};

746.使用最小花费爬楼梯

力扣题目链接

文章讲解:746.使用最小花费爬楼梯

视频讲解:动态规划开更了!| LeetCode:746. 使用最小花费爬楼梯

状态:相较于前两个题目,难度一下就上来了,我个人感觉是贪心和动态规划的结合。

在题目描述中,我们可以选择从下标为0或下标为1的台阶开始爬楼梯。

思路

dp数组含义

想给出结论,本题仍然只需要一个一维的dp数组,其下标记录我们到达了哪个台阶,其中的值就是体力的最小消耗。

以上的推导都是怎么来的呢?

要求的是爬到楼顶,那么我们dp数组应该得用下标来表示我们爬的位置,看是不是到楼顶了;

然后我们要求一个最小消耗,那么我们的dp数组刚好可以存到达该层的一个消耗,刚好逻辑就闭环。

综上:

dp[i]表示到达i位置所需要的花费为dp[i]

递推公式

本题中我们要求的就是dp[i],那么如何跳到dp[i]呢?我们可以从dp[i-1]跳一步到dp[i],也可以从dp[i-2]跳两步到dp[i]

如果从dp[i-1]跳到dp[i]的话,所需要的花费是dp[i-1] + cost[i-1]

如果从dp[i-2]跳到dp[i]的话,所需要的花费是dp[i-2] + cost[i-2]

dp[i]表示到达i位置所需要的花费为dp[i]

显然递推公式为: d p [ i ] = m i n ( d p [ i − 1 ] + c o n s t [ i − 1 ] , d p [ i − 2 ] + c o n s t [ i − 2 ] ) dp[i] = min(dp[i-1] + const[i-1], dp[i-2] + const[i-2]) dp[i]=min(dp[i1]+const[i1],dp[i2]+const[i2])

初始化

很明显,本题只要初始化了dp[1]dp[0]就可以把递推公式打通了。

//题意表明了,可以选择从0层或者从第1层开始跳
dp[0] = 0;	//到达0位置最小花费为0
dp[1] = 0;	//到底1位置最小花费也是0. 因为我们可以选择嘛

遍历顺序

从零往后去遍历

因为是模拟台阶,而且dp[i]由dp[i-1]dp[i-2]推出,所以是从前到后遍历cost数组就可以了。

打印dp数组

打印出来看是不是和我们预想的一样

CPP代码

class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {vector<int> dp(cost.size() + 1);dp[0] = 0; // 默认第一步都是不花费体力的dp[1] = 0;for (int i = 2; i <= cost.size(); i++) {dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);}return dp[cost.size()];}
};//只维护两个数字
class Solution {
public:int minCostClimbingStairs(vector<int>& cost) {int dp0 = 0;int dp1 = 0;for (int i = 2; i <= cost.size(); i++) {int dpi = min(dp1 + cost[i - 1], dp0 + cost[i - 2]);dp0 = dp1; // 记录一下前两位dp1 = dpi;}return dp1;}
};

这篇关于代码随想录算法训练营DAY38|C++动态规划Part.1|动态规划理论基础、509.斐波那契数、70.爬楼梯、746.使用最小花费爬楼梯的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/940205

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

Python中help()和dir()函数的使用

《Python中help()和dir()函数的使用》我们经常需要查看某个对象(如模块、类、函数等)的属性和方法,Python提供了两个内置函数help()和dir(),它们可以帮助我们快速了解代... 目录1. 引言2. help() 函数2.1 作用2.2 使用方法2.3 示例(1) 查看内置函数的帮助(

Linux脚本(shell)的使用方式

《Linux脚本(shell)的使用方式》:本文主要介绍Linux脚本(shell)的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录概述语法详解数学运算表达式Shell变量变量分类环境变量Shell内部变量自定义变量:定义、赋值自定义变量:引用、修改、删

Python实例题之pygame开发打飞机游戏实例代码

《Python实例题之pygame开发打飞机游戏实例代码》对于python的学习者,能够写出一个飞机大战的程序代码,是不是感觉到非常的开心,:本文主要介绍Python实例题之pygame开发打飞机... 目录题目pygame-aircraft-game使用 Pygame 开发的打飞机游戏脚本代码解释初始化部