【算法基础实验】图论-UnionFind连通性检测之quick-union

2024-04-27 04:12

本文主要是介绍【算法基础实验】图论-UnionFind连通性检测之quick-union,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Union-Find连通性检测之quick-union

理论基础

在图论和计算机科学中,Union-Find 或并查集是一种用于处理一组元素分成的多个不相交集合(即连通分量)的情况,并能快速回答这组元素中任意两个元素是否在同一集合中的问题。Union-Find 特别适用于连通性问题,例如网络连接问题或确定图的连通分量。

Union-Find 的基本操作

Union-Find 数据结构支持两种基本操作:

  1. Union(合并): 将两个元素所在的集合合并成一个集合。
  2. Find(查找): 确定某个元素属于哪个集合,这通常涉及找到该集合的“代表元素”或“根元素”。

Union-Find 的结构

Union-Find 通常使用一个整数数组来表示,其中每个元素的值指向它的父节点,这样形成了一种树形结构。集合的“根元素”是其自己的父节点。

Union-Find 的优化技术

为了提高效率,Union-Find 实现中常用两种技术:

  1. 路径压缩(Path Compression): 在执行“查找”操作时,使路径上的每个节点都直接连接到根节点,从而压缩查找路径,减少后续操作的时间。
  2. 按秩合并(Union by Rank): 在执行“合并”操作时,总是将较小的树连接到较大的树的根节点上。这里的“秩”可以是树的深度或者树的大小。

应用示例

Union-Find 算法常用于处理动态连通性问题,如网络中的连接/断开问题或者图中连通分量的确定。例如,Kruskal 的最小生成树算法就使用 Union-Find 来选择边,以确保不形成环路。

总结

Union-Find 是解决连通性问题的一种非常高效的数据结构。它能够快速合并集合并快速判断元素之间的连通性。通过路径压缩和按秩合并的优化,Union-Find 在实际应用中可以接近常数时间完成操作。因此,它在算法竞赛、网络连接和社交网络分析等领域有广泛的应用。

数据结构

private int[] id // 分量id(以触点作为索引)
private int count // 分量数量

实验数据和算法流程

本实验使用tinyUF.txt作为实验数据,数据内容如下,一共定义了10对连通性关系

10
4 3
3 8
6 5
9 4
2 1
8 9
5 0
7 2
6 1
1 0
6 7

实验的目的是检测数据中共有多少个连通分量,并打印每个元素所属的连通分量编号

下图展示了处理5和9连通性的一个瞬间

请添加图片描述

完整流程如下

请添加图片描述

代码实现

原则是小树挂在大树下,如果一棵高度为1,但是有100个节点的树,要把高度为2的三节点小树挂在这课大树上

可以想象如果反过来,大树挂在小树下,大树的100个节点都将变成高度为3的树枝,这样的话查询的整体成本就太高了

import edu.princeton.cs.algs4.StdOut;
import edu.princeton.cs.algs4.StdIn;public class myQuickUnion {private int[] id;private int count;private int finds;private int[] size;public myQuickUnion(int N) { // 初始化分量id数组count = N;id = new int[N];for (int i = 0; i < N; i++) id[i] = i;size = new int[N];for (int i = 0; i < N; i++) size[i] = 1;}public boolean connected(int p, int q){return find(p) == find(q);}public int count(){ return count;}private int find(int p){while(p != id[p]){p = id[p];finds ++;}return p;}public void union(int p, int q){int pRoot = find(p);int qRoot = find(q);if(pRoot==qRoot) return;if(size[pRoot]<size[qRoot]){id[pRoot]=qRoot;size[qRoot]+=size[pRoot];}else{id[qRoot]=pRoot;size[pRoot]+=size[qRoot];}//id[pRoot] = qRoot;//此处注释掉的是随机将两棵树的根连接的表达式//根据实测,加权时总的find次数为2000左右,普通union为2万次左右count --;}public static void main(String[] args){int N = StdIn.readInt();myQuickUnion qu = new myQuickUnion(N);while(!StdIn.isEmpty()){int p = StdIn.readInt();int q = StdIn.readInt();if(qu.connected(p,q)) continue;qu.union(p,q);}StdOut.println("components: "+qu.count);for(int i=0;i<N;i++){StdOut.println(i+":"+qu.id[i]);}StdOut.println("find counts: "+qu.finds);}
}

代码详解

这段代码是一个实现了“加权快速合并”(Weighted Quick Union)的并查集算法的Java类 myQuickUnion。该算法用于处理大量元素的动态连通性问题,提高了普通快速合并(Quick Union)算法的效率。以下是对这段代码的详细解释:

类定义和变量


public class myQuickUnion {private int[] id;     // id数组,用于保存每个节点的父节点private int count;    // 连通分量的数量private int finds;    // 进行find操作的次数统计private int[] size;   // 每个根节点相应的分量大小
  • id 数组中,每个位置保存了该位置元素的父节点索引。
  • count 记录当前图中连通分量的数量。
  • finds 用于记录执行 find 操作的次数,有助于分析算法性能。
  • size 数组用于保存以每个节点为根的树的大小。

构造函数


public myQuickUnion(int N) {count = N;id = new int[N];for (int i = 0; i < N; i++) id[i] = i;size = new int[N];for (int i = 0; i < N; i++) size[i] = 1;
}

构造函数初始化了 id 数组和 size 数组。id 数组的每个元素初始指向自身,表示每个元素都是自己的根节点。size 数组中的每个元素初始为 1,表示每个根节点的树大小为 1。

方法实现

connected


public boolean connected(int p, int q) {return find(p) == find(q);
}

检查两个元素是否连通,即它们是否有相同的根。

find


private int find(int p) {while (p != id[p]) {p = id[p];finds++;}return p;
}

找到元素 p 的根节点。这里使用了路径压缩的一种简单形式,在找根的过程中顺便统计操作次数。

union


public void union(int p, int q) {int pRoot = find(p);int qRoot = find(q);if (pRoot == qRoot) return;if (size[pRoot] < size[qRoot]) {id[pRoot] = qRoot;size[qRoot] += size[pRoot];} else {id[qRoot] = pRoot;size[pRoot] += size[qRoot];}count--;
}

合并两个元素所在的树。如果一个树的大小小于另一个,小的树的根节点将指向大的树的根节点,并更新树的大小。这种“按大小加权”的策略有助于减少树的高度,从而提高后续操作的效率。

主函数


public static void main(String[] args) {int N = StdIn.readInt();myQuickUnion qu = new myQuickUnion(N);while (!StdIn.isEmpty()) {int p = StdIn.readInt();int q = StdIn.readInt();if (qu.connected(p, q)) continue;qu.union(p, q);}StdOut.println("components: " + qu.count);for (int i = 0; i < N; i++) {StdOut.println(i + ":" + qu.id[i]);}StdOut.println("find counts: " + qu.finds);
}

在主函数中,从标准输入读取元素数量和成对的整数。每对整数代表一次尝试连接的操作。如果两个元素已经连通,则忽略;否则,进行合并操作。最终,输出连通分量的数量、每个元素的最终根,以及进行 find 操作的总次数。

实验

代码编译

$ javac myQuickUnion.java

代码运行

该算法处理tinyUF.txt时由于使用了加权方法,优先将小树挂在大树下,这样可以极大减少find操作的次数,提高了性能,在打印中可以看到find counts的值为13,即一共执行了13次find,

$ java myQuickUnion < ..\data\tinyUF.txt 
components: 2
0:6
1:2
2:6
3:4
4:4
5:6
6:6
7:2
8:4
9:4
find counts: 13

如果将权重处理注释掉,使用普通quick-union方法,find counts数值会变为16,影响性能

如果导入mediumUF.txt或者largeUF.txt数据,这个差距将更加悬殊

请添加图片描述

java myQuickUnion < ..\data\tinyUF.txt
components: 2
0:1
1:1
2:1
3:8
4:3
5:0
6:5
7:1
8:8
9:8
find counts: 16

参考资料

算法(第四版) 人民邮电出版社

这篇关于【算法基础实验】图论-UnionFind连通性检测之quick-union的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939487

相关文章

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

Android Mainline基础简介

《AndroidMainline基础简介》AndroidMainline是通过模块化更新Android核心组件的框架,可能提高安全性,本文给大家介绍AndroidMainline基础简介,感兴趣的朋... 目录关键要点什么是 android Mainline?Android Mainline 的工作原理关键

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

mysql的基础语句和外键查询及其语句详解(推荐)

《mysql的基础语句和外键查询及其语句详解(推荐)》:本文主要介绍mysql的基础语句和外键查询及其语句详解(推荐),本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋... 目录一、mysql 基础语句1. 数据库操作 创建数据库2. 表操作 创建表3. CRUD 操作二、外键

Python基础语法中defaultdict的使用小结

《Python基础语法中defaultdict的使用小结》Python的defaultdict是collections模块中提供的一种特殊的字典类型,它与普通的字典(dict)有着相似的功能,本文主要... 目录示例1示例2python的defaultdict是collections模块中提供的一种特殊的字