对多目标粒子群算法MOPSO的理解

2024-04-27 04:08

本文主要是介绍对多目标粒子群算法MOPSO的理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

多目标粒子群(MOPSO)算法是由CarlosA. Coello Coello等在2004年提出来的,详细参考1。目的是将原来只能用在单目标上的粒子群算法(PSO)应用于多目标上。我们知道原来的单目标PSO流程很简单:

-->初始化粒子位置(一般都是随机生成均匀分布)

-->计算适应度值(一般是目标函数值-优化的对象)

-->初始化历史最优pbest为其本身和找出全局最优gbest

-->根据位置和速度公式进行位置和速度的更新

-->重新计算适应度

-->根据适应度更新历史最优pbest和全局最优gbest

-->收敛或者达到最大迭代次数则退出算法

速度的更新公式如下:


等式右边有三部分组成。第一部分是惯性量,是延续粒子上一次运动的矢量;第二部分是个体认知量,是向个体历史最优位置运动的量;第三部分是社会认知量,是粒子向全局最优位置运动的量。

有了速度,则位置更新自然出来了:


以上是对于多目标PSO算法的介绍。运用到多目标上去的话,出现的问题有以下几点:

  1. 如何选择pbest。我们知道对于单目标优化来说选择pbest,只需要对比一下就可以选择出哪个较优。但是对于多目标来说两个粒子的对比,并不能对比出哪个好一些。如果粒子的每个目标都要好的话,则该粒子更优。若有些更好,有些更差的话,就无法严格的说哪个好些,哪个差一些。
  2. 如何选择gbest。我们知道对于单目标在种群中只有一个最优的个体。而对于多目标来说,最优的个体有很多个。而对PSO来说,每个粒子只能选择一个作为最优的个体(领带者)。该如何选择呢?

MOPSO对于第一个问题的做法是在不能严格对比出哪个好一些时随机选择一个其中一个作为历史最优。对于第二个问题,MOPSO则在最优集里面(存档中)根据拥挤程度选择一个领导者。尽量选择不那么密集位置的粒子(在这里用到了网格法)。

MOPSO在选择领导者和对存档(也可以说是pareto临时最优断面)进行更新的时候应用了自适应网格法,详细参考2。

如何选择领带者呢?

MOPSO在存档中选择一个粒子跟随。如何选择呢?根据网格划分,假设每个网格中粒子数个,i代表第几个网格。该网格中的粒子被选择的概率为 ,即粒子越拥挤,则选择的概率越低。这是为了保证能够对未知的区域进行探索。

如何进行存档呢?

在种群更新完成之后,是如何进行存档的呢?MOPSO进行了三轮筛选。

首先,根据支配关系进行第一轮筛选,将劣解去除,剩下的加入到存档中。

其次,在存档中根据支配关系进行第二轮筛选,将劣解去除,并计算存档粒子在网格中的位置。

最后,若存档数量超过了存档阀值,则根据自适应网格进行筛选,直到阀值限额为止。重新进行网格划分。

refer:

  1. Handling multiple objectives with particle swarm optimization
  2. Approximating the non dominated front using the Pareto archivedevolution strategy

这篇关于对多目标粒子群算法MOPSO的理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939479

相关文章

Java Spring的依赖注入理解及@Autowired用法示例详解

《JavaSpring的依赖注入理解及@Autowired用法示例详解》文章介绍了Spring依赖注入(DI)的概念、三种实现方式(构造器、Setter、字段注入),区分了@Autowired(注入... 目录一、什么是依赖注入(DI)?1. 定义2. 举个例子二、依赖注入的几种方式1. 构造器注入(Con

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

从原理到实战深入理解Java 断言assert

《从原理到实战深入理解Java断言assert》本文深入解析Java断言机制,涵盖语法、工作原理、启用方式及与异常的区别,推荐用于开发阶段的条件检查与状态验证,并强调生产环境应使用参数验证工具类替代... 目录深入理解 Java 断言(assert):从原理到实战引言:为什么需要断言?一、断言基础1.1 语

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n