Shark源码分析(十一):随机森林算法

2024-04-27 00:48

本文主要是介绍Shark源码分析(十一):随机森林算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Shark源码分析(十一):随机森林算法

关于这个算法的介绍,可以参看我之前关于集成算法的博客。因为Shark中关于决策树算法只实现了CART算法,所以随机森林算法中也只包含了CART算法。如果你已经看过了我之前写的关于CART算法源码分析的博客,看到后面就会发现它与随机森林算法的代码其实差不多。只是在选择最优划分属性时多了一个随机选取候选集的过程。这也是随机森林算法的一大特点。因为CART算法既可以用于分类任务中也可以用于回归任务中,所以基于CART算法的随机森林也能用于这两个任务。这里我们只介绍其用于分类任务中的代码。

MeanModel类

这个类应该算是集成算法的基类,表示如何将多个基学习器的输出结果综合起来。该类定义在<include/shark/Models/MeanModel.h>中。

template<class ModelType> // ModelType表示基学习器的类型
class MeanModel : public AbstractModel<typename ModelType::InputType, typename ModelType::OutputType>
{
private:typedef AbstractModel<typename ModelType::InputType, typename ModelType::OutputType> base_type;
public:MeanModel():m_weightSum(0){}std::string name() const{ return "MeanModel"; }using base_type::eval;// 输出集成学习器的结果,与决策树输出的结果一样,是对于每一个类别的所属概率void eval(typename base_type::BatchInputType const& patterns, typename base_type::BatchOutputType& outputs)const{m_models[0].eval(patterns,outputs);outputs *=m_weight[0];for(std::size_t i = 1; i != m_models.size(); i++) noalias(outputs) += m_weight[i] * m_models[i](patterns);outputs /= m_weightSum;}void eval(typename base_type::BatchInputType const& patterns, typename base_type::BatchOutputType& outputs, State& state)const{eval(patterns,outputs);}RealVector parameterVector() const {return RealVector();}void setParameterVector(const RealVector& param) {SHARK_ASSERT(param.size() == 0);}void read(InArchive& archive){archive >> m_models;archive >> m_weight;archive >> m_weightSum;}void write(OutArchive& archive)const{archive << m_models;archive << m_weight;archive << m_weightSum;}void clearModels(){m_models.clear();m_weight.clear();m_weightSum = 0.0;}// 增加一个基学习器void addModel(ModelType const& model, double weight = 1.0){SHARK_CHECK(weight > 0, "Weights must be positive");m_models.push_back(model);m_weight.push_back(weight);m_weightSum+=weight;}double const& weight(std::size_t i)const{return m_weight[i];}void setWeight(std::size_t i, double newWeight){m_weightSum=newWeight - m_weight[i];m_weight[i] = newWeight;}std::size_t numberOfModels()const{return m_models.size();}protected:// 表示所有的基学习器,这里要求它们的类型是一致的,但是在实际的应用中,其实是可以不一样的std::vector<ModelType> m_models;// 表示各个基学习器的权重std::vector<double> m_weight;// 所有权重之和double m_weightSum;
};

RFClassifier类

该类是用来表示一个随机森林,定义在<include/shark/Models/Trees/RFClassifier.h>中。

class RFClassifier : public MeanModel<CARTClassifier<RealVector> >
{
public:std::string name() const{ return "RFClassifier"; }// 计算模型的平均OOB误差,将基学习器的OOB误差累加起来,再除以基学习器的个数void computeOOBerror(){std::size_t n_trees = numberOfModels();m_OOBerror = 0;for(std::size_t j=0;j!=n_trees;++j){m_OOBerror += m_models[j].OOBerror();}m_OOBerror /= n_trees;}// 综合基学习器每一维的重要程度,得到集成学习器每一维的重要程度void computeFeatureImportances(){m_featureImportances.resize(m_inputDimension);std::size_t n_trees = numberOfModels();for(std::size_t i=0;i!=m_inputDimension;++i){m_featureImportances[i] = 0;for(std::size_t j=0;j!=n_trees;++j){m_featureImportances[i] += m_models[j].featureImportances()[i];}m_featureImportances[i] /= n_trees;}}double const OOBerror() const {return m_OOBerror;}RealVector const& featureImportances() const {return m_featureImportances;}// 统计对于所有的基学习器,每一个特征在选择最优划分属性时被使用的次数UIntVector countAttributes() const {std::size_t n = m_models.size();if(!n) return UIntVector();UIntVector r = m_models[0].countAttributes();for(std::size_t i=1; i&l

这篇关于Shark源码分析(十一):随机森林算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939114

相关文章

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Python主动抛出异常的各种用法和场景分析

《Python主动抛出异常的各种用法和场景分析》在Python中,我们不仅可以捕获和处理异常,还可以主动抛出异常,也就是以类的方式自定义错误的类型和提示信息,这在编程中非常有用,下面我将详细解释主动抛... 目录一、为什么要主动抛出异常?二、基本语法:raise关键字基本示例三、raise的多种用法1. 抛

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三

Mysql的主从同步/复制的原理分析

《Mysql的主从同步/复制的原理分析》:本文主要介绍Mysql的主从同步/复制的原理分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录为什么要主从同步?mysql主从同步架构有哪些?Mysql主从复制的原理/整体流程级联复制架构为什么好?Mysql主从复制注意

java -jar命令运行 jar包时运行外部依赖jar包的场景分析

《java-jar命令运行jar包时运行外部依赖jar包的场景分析》:本文主要介绍java-jar命令运行jar包时运行外部依赖jar包的场景分析,本文给大家介绍的非常详细,对大家的学习或工作... 目录Java -jar命令运行 jar包时如何运行外部依赖jar包场景:解决:方法一、启动参数添加: -Xb

Apache 高级配置实战之从连接保持到日志分析的完整指南

《Apache高级配置实战之从连接保持到日志分析的完整指南》本文带你从连接保持优化开始,一路走到访问控制和日志管理,最后用AWStats来分析网站数据,对Apache配置日志分析相关知识感兴趣的朋友... 目录Apache 高级配置实战:从连接保持到日志分析的完整指南前言 一、Apache 连接保持 - 性

Linux中的more 和 less区别对比分析

《Linux中的more和less区别对比分析》在Linux/Unix系统中,more和less都是用于分页查看文本文件的命令,但less是more的增强版,功能更强大,:本文主要介绍Linu... 目录1. 基础功能对比2. 常用操作对比less 的操作3. 实际使用示例4. 为什么推荐 less?5.

spring-gateway filters添加自定义过滤器实现流程分析(可插拔)

《spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔)》:本文主要介绍spring-gatewayfilters添加自定义过滤器实现流程分析(可插拔),本文通过实例图... 目录需求背景需求拆解设计流程及作用域逻辑处理代码逻辑需求背景公司要求,通过公司网络代理访问的请求需要做请

Java集成Onlyoffice的示例代码及场景分析

《Java集成Onlyoffice的示例代码及场景分析》:本文主要介绍Java集成Onlyoffice的示例代码及场景分析,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 需求场景:实现文档的在线编辑,团队协作总结:两个接口 + 前端页面 + 配置项接口1:一个接口,将o

IDEA下"File is read-only"可能原因分析及"找不到或无法加载主类"的问题

《IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题》:本文主要介绍IDEA下Fileisread-only可能原因分析及找不到或无法加载主类的问题,具有很好的参... 目录1.File is read-only”可能原因2.“找不到或无法加载主类”问题的解决总结1.File