Shark源码分析(十):KNN算法

2024-04-27 00:48
文章标签 算法 分析 源码 knn shark

本文主要是介绍Shark源码分析(十):KNN算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Shark源码分析(十):KNN算法

关于这个算法,我之前已经有博客详细介绍过。虽然说这个算法看上去非常的简单,但是在搜索k个最近邻居数据点时,还是非常具有技巧性的。这里还是有必要再次强调一下。如果输入数据的维度不高,可以使用树形结构(kd树)来加快查找的速度。如果输入的维度较高,则利用树型结构的速度与计算两两数据间距离的速度并不会有太大的差别。之后我们要介绍的代码也是利用kd树来组织的。

在计算距离时,不仅可以选择欧几里得距离,同样可以选择基于核函数的距离。同样地,也有基于核函数距离的kd树。

BinaryTree类

这个类不是我们通常所认为的二叉树的结点类,而是表示binary space-partitioning tree 的结点。在每一个父结点处,表示将当前的空间分为两个子空间。这个分隔,不仅允许线性地分隔,同样也可以使用基于核函数的分隔。该类定义在<include/shark/Models/Trees/BinaryTree.h>

template <class InputT>
class BinaryTree
{
public:typedef InputT value_type;BinaryTree(std::size_t size): mep_parent(NULL), mp_left(NULL), mp_right(NULL), mp_indexList(NULL), m_size(size), m_nodes(0), m_threshold(0.0){SHARK_ASSERT(m_size > 0);mp_indexList = new std::size_t[m_size];boost::iota(boost::make_iterator_range(mp_indexList,mp_indexList+m_size),0);}virtual ~BinaryTree(){if (mp_left != NULL) delete mp_left;if (mp_right != NULL) delete mp_right;if (mep_parent == NULL) delete [] mp_indexList;}BinaryTree* parent(){ return mep_parent; }const BinaryTree* parent() const{ return mep_parent; }bool hasChildren() const{ return (mp_left != NULL); }bool isLeaf() const{ return (mp_left == NULL); }BinaryTree* left(){ return mp_left; }const BinaryTree* left() const{ return mp_left; }BinaryTree* right(){ return mp_right; }const BinaryTree* right() const{ return mp_right; }std::size_t size() const{ return m_size; }std::size_t nodes() const{ return m_nodes; }std::size_t index(std::size_t point)const{return mp_indexList[point];}double distanceFromPlane(value_type const& point) const{return funct(point) - m_threshold;}double threshold() const{return m_threshold;}// 注意到,前面的left函数表示返回左孩子结点,而该函数的意思是// 查询结点是否位于左子空间内bool isLeft(value_type const& point) const{ return (funct(point) < m_threshold); }bool isRight(value_type const& point) const{ return (funct(point) >= m_threshold); }//如果计算距离时使用的是核函数,则返回核函数的对象virtual AbstractKernelFunction<value_type> const* kernel()const{//default is no kernel metricreturn NULL;}// 计算查询点与当前空间距离下界的平方// 灵活使用三角不等式,可以使这个界更紧,搜索的速度也更快virtual double squaredDistanceLowerBound(value_type const& point) const = 0;protected:BinaryTree(BinaryTree* parent, std::size_t* list, std::size_t size): mep_parent(parent), mp_left(NULL), mp_right(NULL), mp_indexList(list), m_size(size), m_nodes(0){}// 计算查询点与当前分隔平面的距离virtual double funct(value_type const& point) const = 0;// 将结点中的数据分开。并返回分隔点。// Range1表示具体的数据值,Range2表示具体的数据点template<class Range1, class Range2>typename boost::range_iterator<Range2>::type splitList (Range1& values, Range2& points){typedef typename boost::range_iterator<Range1>::type iterator1;typedef typename boost::range_iterator<Range2>::type iterator2;iterator1 valuesBegin = boost::begin(values);iterator1 valuesEnd = boost::end(values);//partitionEqually函数是将整个range划分为大小尽可能相等的两部分std::pair<iterator1, iterator2> splitpoint = partitionEqually(zipKeyValuePairs(values,points)).iterators();iterator1 valuesSplitpoint = splitpoint.first;iterator2 pointsSplitpoint = splitpoint.second;if (valuesSplitpoint == valuesEnd) {// partitioning failed, all values are equal :(m_threshold = *valuesBegin;return splitpoint.second;}// We don't want the threshold to be the value of an element but always in between two of them.// This ensures that no point of the training set lies on the boundary. This leeds to more stable// results. So we use the mean of the found splitpoint and the nearest point on the other side// of the boundary.double maximum = *std::max_element(valuesBegin, valuesSplitpoint);m_threshold = 0.5*(maximum + *valuesSplitpoint);return pointsSplitpoint;}//父结点指针BinaryTree* mep_parent;//左孩子结点指针BinaryTree* mp_left;//右孩子结点指针BinaryTree* mp_right;//存储当前结点中数据类标签的列表std::size_t* mp_indexList;//当前结点中数据的个数std::size_t m_size;//以当前结点为根节点的子树的结点个数std::size_t m_nodes;//分隔空间的阈值double m_threshold;};

TreeConstruction类

这个类表示的是树构造的停止条件,停止条件可以是树的高度,或是叶子结点中包含数据的最小个数。该文件的定义位置与BinaryTree是一样的。

class TreeConstruction
{
public:TreeConstruction(): m_maxDepth(0xffffffff), m_maxBucketSize(1){ }TreeConstruction(TreeConstruction const& other): m_maxDepth(other.m_maxDepth), m_maxBucketSize(other.m_maxBucketSize){ }TreeConstruction(unsigned int maxDepth, unsigned int maxBucketSize): m_maxDepth(maxDepth ? maxDepth : 0xffffffff), m_maxBucketSize(maxBucketSize ? maxBucketSize : 1){ }//使树的高度限制减1TreeConstruction nextDepthLevel() const{ return TreeConstruction(m_maxDepth - 1, m_maxBucketSize); }unsigned int maxDepth() const{ return m_maxDepth; }unsigned int maxBucketSize() const{ return m_maxBucketSize; }protected://树的最大深度unsigned int m_maxDepth;//叶子就诶点钟所含数据的最小个数unsigned int m_maxBucketSize;
};

KDTree类

该类定义在<include/shark/Models/Trees/KDTree.h>中。

template <class InputT>
class KDTree : public BinaryTree<I

这篇关于Shark源码分析(十):KNN算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/939113

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

java 恺撒加密/解密实现原理(附带源码)

《java恺撒加密/解密实现原理(附带源码)》本文介绍Java实现恺撒加密与解密,通过固定位移量对字母进行循环替换,保留大小写及非字母字符,由于其实现简单、易于理解,恺撒加密常被用作学习加密算法的入... 目录Java 恺撒加密/解密实现1. 项目背景与介绍2. 相关知识2.1 恺撒加密算法原理2.2 Ja

Nginx屏蔽服务器名称与版本信息方式(源码级修改)

《Nginx屏蔽服务器名称与版本信息方式(源码级修改)》本文详解如何通过源码修改Nginx1.25.4,移除Server响应头中的服务类型和版本信息,以增强安全性,需重新配置、编译、安装,升级时需重复... 目录一、背景与目的二、适用版本三、操作步骤修改源码文件四、后续操作提示五、注意事项六、总结一、背景与