利用ftrace进行内核性能分析

2024-04-26 03:38

本文主要是介绍利用ftrace进行内核性能分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在内核层面上分析事件有很多的工具:SystemTap、ktap、Sysdig、LTTNG 等等,你也可以在网络上找到关于这些工具的大量介绍文章和资料。

而对于使用 Linux 原生机制去跟踪系统事件以及检索/分析故障信息的方面的资料却很少找的到。这就是 ftrace,它是添加到内核中的第一款跟踪工具,今天我们来看一下它都能做什么.

ftrace 是 Function Trace 的简写,但它能做的远不止这些:它可以跟踪上下文切换、测量进程阻塞时间、计算高优先级任务的活动时间等等。

ftrace 是由 Steven Rostedt 开发的,从 2008 年发布的内核 2.6.27 中开始就内置了。这是为记录数据提供的一个调试 Ring 缓冲区的框架。这些数据由集成到内核中的跟踪程序来采集。

ftrace 工作在 debugfs 文件系统上,在大多数现代 Linux 发行版中都默认挂载了。要开始使用 ftrace,你将进入到 sys/kernel/debug/tracing 目录(仅对 root 用户可用):

第一步:确认机器已经挂载debugfs

第二步: 查看系统当前支持的tracer

root@czl-VirtualBox:/sys/kernel/debug/tracing# cat available_tracers 
hwlat blk mmiotrace function_graph wakeup_dl wakeup_rt wakeup function nop
root@czl-VirtualBox:/sys/kernel/debug/tracing# 

第三步:设置其中一个tracer:

echo wakeup_rt >current_tracer 
echo 1 > tracing_on
echo 0 > tracing_on

在echo 1和 echo 0中间停留片刻,等待ftrace将ringbuffer填充

之后执行如下命令查看结果:

cat trace
root@czl-VirtualBox:/sys/kernel/debug/tracing# cat trace
# tracer: wakeup_rt
#
# wakeup_rt latency trace v1.1.5 on 5.4.0-81-generic
# --------------------------------------------------------------------
# latency: 112 us, #154/154, CPU#0 | (M:desktop VP:0, KP:0, SP:0 HP:0 #P:1)
#    -----------------
#    | task: migration/0-12 (uid:0 nice:0 policy:1 rt_prio:99)
#    -----------------
#
#                    _------=> CPU#            
#                   / _-----=> irqs-off        
#                  | / _----=> need-resched    
#                  || / _---=> hardirq/softirq 
#                  ||| / _--=> preempt-depth   
#                  |||| /     delay            
#  cmd     pid     ||||| time  |   caller      
#     \   /        |||||  \    |   /         <idle>-0         0dNh.    1us+:        0:120:R   + [000]      12:  0:R migration/0<idle>-0         0dNh.   20us : <stack trace>=> __trace_stack=> probe_wakeup=> ttwu_do_wakeup=> ttwu_do_activate=> try_to_wake_up=> wake_up_q=> cpu_stop_queue_work=> stop_one_cpu_nowait=> watchdog_timer_fn=> __hrtimer_run_queues=> hrtimer_interrupt=> smp_apic_timer_interrupt=> apic_timer_interrupt=> mwait_idle=> arch_cpu_idle=> default_idle_call=> do_idle=> cpu_startup_entry=> rest_init=> arch_call_rest_init=> start_kernel=> x86_64_start_reservations=> x86_64_start_kernel=> secondary_startup_64<idle>-0         0dNh.   21us : ttwu_do_activate <-try_to_wake_up<idle>-0         0dNh.   21us : _raw_spin_unlock_irqrestore <-try_to_wake_up<idle>-0         0dNh.   22us : ktime_get <-watchdog_timer_fn<idle>-0         0dNh.   22us : hrtimer_forward <-watchdog_timer_fn<idle>-0         0dNh.   23us : _raw_spin_lock_irq <-__hrtimer_run_queues<idle>-0         0dNh.   23us : enqueue_hrtimer <-__hrtimer_run_queues<idle>-0         0dNh.   26us : __remove_hrtimer <-__hrtimer_run_queues<idle>-0         0dNh.   27us : _raw_spin_unlock_irqrestore <-__hrtimer_run_queues<idle>-0         0dNh.   27us : tick_sched_timer <-__hrtimer_run_queues<idle>-0         0dNh.   28us : ktime_get <-tick_sched_timer<idle>-0         0dNh.   28us : tick_sched_do_timer <-tick_sched_timer<idle>-0         0dNh.   29us : tick_do_update_jiffies64.part.14 <-tick_sched_do_timer<idle>-0         0dNh.   29us : _raw_spin_lock <-tick_do_update_jiffies64.part.14<idle>-0         0dNh.   29us : do_timer <-tic

这篇关于利用ftrace进行内核性能分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/936620

相关文章

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景

Redis中的有序集合zset从使用到原理分析

《Redis中的有序集合zset从使用到原理分析》Redis有序集合(zset)是字符串与分值的有序映射,通过跳跃表和哈希表结合实现高效有序性管理,适用于排行榜、延迟队列等场景,其时间复杂度低,内存占... 目录开篇:排行榜背后的秘密一、zset的基本使用1.1 常用命令1.2 Java客户端示例二、zse

Redis中的AOF原理及分析

《Redis中的AOF原理及分析》Redis的AOF通过记录所有写操作命令实现持久化,支持always/everysec/no三种同步策略,重写机制优化文件体积,与RDB结合可平衡数据安全与恢复效率... 目录开篇:从日记本到AOF一、AOF的基本执行流程1. 命令执行与记录2. AOF重写机制二、AOF的

MyBatis Plus大数据量查询慢原因分析及解决

《MyBatisPlus大数据量查询慢原因分析及解决》大数据量查询慢常因全表扫描、分页不当、索引缺失、内存占用高及ORM开销,优化措施包括分页查询、流式读取、SQL优化、批处理、多数据源、结果集二次... 目录大数据量查询慢的常见原因优化方案高级方案配置调优监控与诊断总结大数据量查询慢的常见原因MyBAT

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决

《MyBatis/MyBatis-Plus同事务循环调用存储过程获取主键重复问题分析及解决》MyBatis默认开启一级缓存,同一事务中循环调用查询方法时会重复使用缓存数据,导致获取的序列主键值均为1,... 目录问题原因解决办法如果是存储过程总结问题myBATis有如下代码获取序列作为主键IdMappe

Python进行word模板内容替换的实现示例

《Python进行word模板内容替换的实现示例》本文介绍了使用Python自动化处理Word模板文档的常用方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友... 目录技术背景与需求场景核心工具库介绍1.获取你的word模板内容2.正常文本内容的替换3.表格内容的

Git进行版本控制的实战指南

《Git进行版本控制的实战指南》Git是一种分布式版本控制系统,广泛应用于软件开发中,它可以记录和管理项目的历史修改,并支持多人协作开发,通过Git,开发者可以轻松地跟踪代码变更、合并分支、回退版本等... 目录一、Git核心概念解析二、环境搭建与配置1. 安装Git(Windows示例)2. 基础配置(必

Java中最全最基础的IO流概述和简介案例分析

《Java中最全最基础的IO流概述和简介案例分析》JavaIO流用于程序与外部设备的数据交互,分为字节流(InputStream/OutputStream)和字符流(Reader/Writer),处理... 目录IO流简介IO是什么应用场景IO流的分类流的超类类型字节文件流应用简介核心API文件输出流应用文

Docker多阶段镜像构建与缓存利用性能优化实践指南

《Docker多阶段镜像构建与缓存利用性能优化实践指南》这篇文章将从原理层面深入解析Docker多阶段构建与缓存机制,结合实际项目示例,说明如何有效利用构建缓存,组织镜像层次,最大化提升构建速度并减少... 目录一、技术背景与应用场景二、核心原理深入分析三、关键 dockerfile 解读3.1 Docke