深度学习目标检测算法SSD300 训练自己的数据与测试(基于Keras WIN10 Python3.6)数据集制作、代码详细介绍 (源代码、相关软件及权值下载)

本文主要是介绍深度学习目标检测算法SSD300 训练自己的数据与测试(基于Keras WIN10 Python3.6)数据集制作、代码详细介绍 (源代码、相关软件及权值下载),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

基于Keras搭建的SSD300目标检测神经网络

先看看效果(图片来源:视觉中国 www.vcg.com,这里只做演示使用,我也不获利,请视觉中国不要告我,实在不让我用就联系我删了吧,感恩
在这里插入图片描述

1. 运行需要的模块

代码运行需要部分必须的Python模块包括:(部分依赖模块未列出)

  • Keras >= 2.0.0
  • TensorFlow >= 1.7.0
  • Tensorboard >= 1.7.0
  • numpy >= 1.9.0
  • opencv >= 3.3.1

2. 测试代码运行情况

下载好的代码及权值文件(源代码及权值文件免费下载见文章尾
最终你的项目文件夹应该是这样的
在这里插入图片描述

将下载好的权值文件放在 SSD300_Train/weights 文件夹中
运行 SSD_test.py 即可得到上图的效果 ~ ~
如果没报错就说明的Python环境配置正确了,恭喜进入下一阶段

3. SSD_test.py 讲解

项目自带的权值文件是以VOC数据集训练的,能够检测20种目标。详细内部实现不作详细讲解,主要介绍下面的主要部分。

在这里插入图片描述

4. 训练自己的数据集

4.1 创建自己的数据集

代码的数据集使用的VOC的数据格式(不知道的请自行百度一下,这里不细说),使用ImgLabel软件标注,软件下载可以去GitHub搜索imglabel源代码copy下来,使用方法请自行百度。文章尾部也给出了已经编译好了的exe版本下载地址(免费),嫌麻烦的也可以直接下载我上传到CSDN上的版本

重点!!!!!!
  • 在进行标计前建议将拍摄的原始图像进行一定的缩放,保证图片的大小在200k左右,要不训练超级慢。
  • 标记前请一定先确定好自己数据集存放的位置,一旦确定就不要变了,要不会很麻烦。
    具体原因:代码中图片的具体读取是通过 读取标记文件(.xml)中的图片路径来读取图片的(如下图中红线的部分),如果数据集位置变了但文件中有没改这里,就会读取不到图片。
    使用我上传到CSDN上的imglabel软件标注的同学可能会注意到路径中缺少文件后缀,请不要担心,继续往下看
    在这里插入图片描述
  • 标注时同一类目标的名称一定要完全一样(包括大小写),要不就不是同一类了不是?
  • 标注完毕后在数据集文件夹中创建一个name.txt,将数据集中的类别名称填入文件中,每个类名一行(例如下图),一定要和数据集中的类名完全一样。

5. 开始训练

训练包括两部,第一步生成标记数据文件(文件夹中的my_new_data.pkl);第二步配置训练参数开始训练。

5.1 生成标记数据文件

注意:每次更改训练集内的图片都应该重新生成标记数据文件!!!!
生成标记数据文件主要用到 TransData.py
使用时主要修改main函数
在这里插入图片描述
4.1中提到的.xml文件中的图片路径中缺少文件后缀同学请执行下一步,如果没有出现文件后缀丢失,请忽略。
在这里插入图片描述
没有后缀的在这里添加上后缀(包括后缀中的点), 如果数据集中的图片后缀不统一的话还是写个脚本将.xml文件中的后缀添加上,有需要的同学请评论联系我。
生成成功后应该会有一个.pkl文件产生(或者更新覆盖原来的)。

5.2 配置训练参数开始训练

主要修改TrainSSD.py文件
修改参数主要包括以下几个:

  • 设置训练集的比例
    此处设置训练集的个数占总的数据集的0.8,剩下的0.2为测试集在这里插入图片描述

  • 设置训练的batch_size
    此处设置batch_size为每个batch 16张在这里插入图片描述

  • 设置冻结层
    这里涉及到迁移学习的一点概念思想,感兴趣的同学建议自己查查。这里我们将产生特征层的网络部分冻结起来,只训练类别预测和位置回归的部分,这样即使训练集很小也可以获得不错的训练效果。当然如果你的训练集比较大还是重头训练的好。
    在这里插入图片描述

  • 设置基础学习率
    训练时学习率采用指数下降方式,每训练一个epoch,梯度都会改变,这里设置的是基础学习率
    在这里插入图片描述

  • 设置训练回合数
    这里设置训练100回合在这里插入图片描述

5.3 开始训练

按实际情况更改下列变量的值
在这里插入图片描述
修改完成后,开始训练,每训练一个回合后,权值文件会自动保存,同时代码中设置了Tensorboard的回调函数,可以调用tensorboard可视化训练信息。

调用tensorboard

打开cmd cd 到项目文件夹中 输入 tensorboard --logdir logs
将返回的连接复制到浏览器中打开即可

下载源代码

为了保障所有人能免费下载到源代码,同时推广一下自己建立的公众号(主要分享一些教程),请扫描下方二维码关注公众号回复相应的关键字获取下载链接

  • 源代码及权值下载地址:回复“SSD训练”。

  • imglabel标注工具下载地址:回复“标注工具

  • 有需要rely源码的直接回复“rely下载”,就不一一发邮箱了。

在这里插入图片描述

这篇关于深度学习目标检测算法SSD300 训练自己的数据与测试(基于Keras WIN10 Python3.6)数据集制作、代码详细介绍 (源代码、相关软件及权值下载)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/935537

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

Win10安装Maven与环境变量配置过程

《Win10安装Maven与环境变量配置过程》本文介绍Maven的安装与配置方法,涵盖下载、环境变量设置、本地仓库及镜像配置,指导如何在IDEA中正确配置Maven,适用于Java及其他语言项目的构建... 目录Maven 是什么?一、下载二、安装三、配置环境四、验证测试五、配置本地仓库六、配置国内镜像地址

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick