Levenberg-Marquardt (LM) 算法进行非线性拟合

2024-04-25 12:28

本文主要是介绍Levenberg-Marquardt (LM) 算法进行非线性拟合,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


目录

  • 1. LM算法
  • 2. 调包实现
  • 3. LM算法实现
  • 4. 源码地址


1. LM算法

LM算法是一种非线性最小二乘优化算法,用于求解非线性最小化问题。LM主要用于解决具有误差函数的非线性最小二乘问题,其中误差函数是参数的非线性函数,需要通过调整参数使误差函数最小化。算法的基本思想是通过迭代的方式逐步调整参数,使得误差函数在参数空间中逐渐收敛到最小值。在每一次迭代中,算法通过求解一个线性方程组来更新参数。这个线性方程组由误差函数的雅可比矩阵和参数更新量构成。

LM算法的优点在于它能够快速收敛到局部最小值,并且对于初始参数的选择不太敏感。此外,算法还能够处理参数个数多于观测数据个数的问题,并且对于存在噪声的数据也比较鲁棒。

2. 调包实现

如图1所示,调用scipy.optimize的least_squares函数实现对测试函数 exp ⁡ ( − a x 2 − b y 2 ) \exp(-ax^2-by^2) exp(ax2by2)的拟合结果。目标参数为 [ 0.5 , 0.5 ] [0.5, 0.5] [0.5,0.5],初始参数设置为 [ 1.0 , 1.0 ] [1.0, 1.0] [1.0,1.0],经过22次迭代,由于观测值暂未添加噪声,所以最终拟合参数与目标参数完全一致。

在这里插入图片描述

Fig. 1. 三维目标拟合: $\exp(-ax^2-by^2)$

3. LM算法实现

使用Python对LM做了简单实现,并对测试函数 exp ⁡ ( a x 2 + b x + c ) \exp(ax^2+bx+c) exp(ax2+bx+c)进行拟合,观测值添加高斯噪声。目标参数为 [ 1.0 , 2.0 , 3.0 ] [1.0, 2.0, 3.0] [1.0,2.0,3.0],初始参数设置为 [ 3.0 , 9.0 , 6.0 ] [3.0, 9.0, 6.0] [3.0,9.0,6.0],经过41次迭代,拟合参数为 [ 2.0 , 0.6 , 3.5 ] [2.0, 0.6, 3.5] [2.0,0.6,3.5],MSE损失小于0.000001,符合拟合误差要求。图2绘制了第12(蓝),13(黄),15(绿)次迭代结果以及最终拟合结果(红)。

在这里插入图片描述

Fig. 2. 二维目标拟合: $\exp(ax^2+bx+c)$
# 部分函数代码:def Func(abc,iput):   # 需要拟合的函数,abc是包含三个参数的一个矩阵[[a],[b],[c]]a = abc[0,0]b = abc[1,0]c = abc[2,0]return np.exp(a*iput**2+b*iput+c)def Deriv(abc,iput,n):  # 对函数求偏导x1 = abc.copy()x2 = abc.copy()x1[n,0] -= 0.000001x2[n,0] += 0.000001p1 = Func(x1,iput)p2 = Func(x2,iput)d = (p2-p1)*1.0/(0.000002)return dxk_l = []  # 用来存放每次迭代的结果
while conve:mse,mse_tmp = 0,0step += 1  fx = Func(xk,h) - ymse += sum(fx**2)for j in range(3): J[:,j] = Deriv(xk,h,j) # 数值求导                                                    mse /= n  # 范围约束H = J.T*J + u*np.eye(3)   # 3*3dx = -H.I * J.T*fx        # xk_tmp = xk.copy()xk_tmp += dxfx_tmp =  Func(xk_tmp,h) - y  mse_tmp = sum(fx_tmp[:,0]**2)mse_tmp /= n#判断是否下降q = float((mse - mse_tmp)/((0.5*dx.T*(u*dx - J.T*fx))[0,0]))if q > 0:s = 1.0/3.0v = 2mse = mse_tmpxk = xk_tmptemp = 1 - pow(2*q-1,3)if s > temp:u = u*selse:u = u*tempelse:u = u*vv = 2*vxk = xk_tmpprint ("step = %d,abs(mse-lase_mse) = %.8f" %(step,abs(mse-lase_mse)))  if abs(mse-lase_mse)<0.000001:breaklase_mse = mse  # 记录上一个 mse 的位置conve -= 1xk_l.append(xk)

4. 源码地址

如果对您有用的话可以点点star哦~

https://github.com/Jurio0304/cs-math/blob/main/hw4_LM.ipynb


创作不易,麻烦点点赞和关注咯!

这篇关于Levenberg-Marquardt (LM) 算法进行非线性拟合的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/934679

相关文章

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

windows系统上如何进行maven安装和配置方式

《windows系统上如何进行maven安装和配置方式》:本文主要介绍windows系统上如何进行maven安装和配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不... 目录1. Maven 简介2. maven的下载与安装2.1 下载 Maven2.2 Maven安装2.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

Go语言中使用JWT进行身份验证的几种方式

《Go语言中使用JWT进行身份验证的几种方式》本文主要介绍了Go语言中使用JWT进行身份验证的几种方式,包括dgrijalva/jwt-go、golang-jwt/jwt、lestrrat-go/jw... 目录简介1. github.com/dgrijalva/jwt-go安装:使用示例:解释:2. gi

SpringBoot如何对密码等敏感信息进行脱敏处理

《SpringBoot如何对密码等敏感信息进行脱敏处理》这篇文章主要为大家详细介绍了SpringBoot对密码等敏感信息进行脱敏处理的几个常用方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录​1. 配置文件敏感信息脱敏​​2. 日志脱敏​​3. API响应脱敏​​4. 其他注意事项​​总结

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

Python对PDF书签进行添加,修改提取和删除操作

《Python对PDF书签进行添加,修改提取和删除操作》PDF书签是PDF文件中的导航工具,通常包含一个标题和一个跳转位置,本教程将详细介绍如何使用Python对PDF文件中的书签进行操作... 目录简介使用工具python 向 PDF 添加书签添加书签添加嵌套书签Python 修改 PDF 书签Pytho

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Pandas进行周期与时间戳转换的方法

《Pandas进行周期与时间戳转换的方法》本教程将深入讲解如何在pandas中使用to_period()和to_timestamp()方法,完成时间戳与周期之间的转换,并结合实际应用场景展示这些方法的... 目录to_period() 时间戳转周期基本操作应用示例to_timestamp() 周期转时间戳基