书生·浦语大模型第二期实战营第七节-OpenCompass 大模型评测实战 笔记和作业

本文主要是介绍书生·浦语大模型第二期实战营第七节-OpenCompass 大模型评测实战 笔记和作业,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源:

视频教程:https://www.bilibili.com/video/BV1Pm41127jU/?spm_id_from=333.788&vd_source=f4a51f7f5a63e756f73ad0dff318c1a3

文字教程:https://github.com/InternLM/Tutorial/blob/camp2/opencompass/readme.md

作业来源:https://github.com/InternLM/Tutorial/blob/camp2/opencompass/homework.md

1. OpenCompass 大模型评测

1.1 如何通过能力评测促进模型发展


面向未来,拓展能力维度:大模型学习人的能力,目前的上限是人的想象力上限,设计数学、推理、代码、智能体等各种维度来评测模型性能。
聚焦垂直行业:大模型在通用领域已经能达到不错的效果,但是在医疗金融法律等需要高精的专业领域,需要更加规范的内容来评估模型的行业适用性。
中文基准:目前全球社区大模型生态以英文为主,通过针对中文场景设计相关评测基准,来促进中文社区的大模型发展。
能力评测反哺能力迭代:通过评测,发现模型不足,针对性提升。

1.2 大语言模型评测中的挑战

全面性:

评测需要综合考量模型在不同维度上的表现,包括语言理解、知识应用、逻辑推理、创造力等。同时,还应考虑模型在特定垂直行业如医疗、金融、法律等领域的专业能力,以及其对新情境的适应性和学习能力。
评测成本:

大模型的评测往往涉及大规模的计算资源和数据集,这导致评测成本显著增加。另外,为了获得全面的评测结果,除了客观的打分题目,还有基于人工打分的主观评测,进一步增加了时间和经济成本。
数据污染:

数据污染指的是评测数据被加入到模型的训练数据中,需要可靠的数据污染检测技术和动态调节的评测基准,来获得真实客观的评估结果。
鲁棒性:

评测大模型时,需要检验其在面对变化的提示词输入的鲁棒性,设计针对鲁棒性的评测数据,例如挖掘大模型的bias(针对顺序的bias、针对长短文本的bias等),在多次采样下评估模型的性能。

1.3 如何评测大模型

基座模型:海量数据无监督训练(Base)

对话模型:指令数据有监督微调(SFT)、人类偏好对齐(RLHF)

1.4 提示词工程

 构建评测集需要对提示词有较高的要求,避免引入评测结果偏差,下面是一些例子,例如文本语义要明确,具体细节,迭代反馈、few-shot、思维链等一些prompt工程化技巧:

1.5 大模型评测全栈工具链

 1.6 评测基准

MathBench:多层次数学能力评测基准,包括不同的难度,不同的语言。还包括循环评估,可以消除大模型对答案顺序的bias。

CriticBench:多维度LLM反思能力评估基准

T-Eval:大模型细粒度工具能力评测基准

F-Eval:大模型基础能力评测基准

CreationBench:多场景中文创作能力评测标准

CIBench:代码解释能力评测标准

 OpenFinData:全场景金融评测基准

LawBench:大模型司法能力基准

MedBench :中文医疗大模型评测基准

SecBench:网络安全评测基准

 2. 作业-使用 OpenCompass 评测 internlm2-chat-1_8b 模型

命令行

python run.py --datasets ceval_gen --hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True --model-kwargs trust_remote_code=True device_map='auto' --max-seq-len 1024 --max-out-len 16 --batch-size 2 --num-gpus 1 --debug
python run.py
--datasets ceval_gen \
--hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace 模型路径
--tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace tokenizer 路径(如果与模型路径相同,可以省略)
--tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True \  # 构建 tokenizer 的参数
--model-kwargs device_map='auto' trust_remote_code=True \  # 构建模型的参数
--max-seq-len 1024 \  # 模型可以接受的最大序列长度
--max-out-len 16 \  # 生成的最大 token 数
--batch-size 2  \  # 批量大小
--num-gpus 1  # 运行模型所需的 GPU 数量
--debug

protobuf报错

解决方案:

pip install protobuf

评测 

 

这篇关于书生·浦语大模型第二期实战营第七节-OpenCompass 大模型评测实战 笔记和作业的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/932877

相关文章

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

Spring Boot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)

《SpringBoot拦截器Interceptor与过滤器Filter深度解析(区别、实现与实战指南)》:本文主要介绍SpringBoot拦截器Interceptor与过滤器Filter深度解析... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现与实

基于C#实现MQTT通信实战

《基于C#实现MQTT通信实战》MQTT消息队列遥测传输,在物联网领域应用的很广泛,它是基于Publish/Subscribe模式,具有简单易用,支持QoS,传输效率高的特点,下面我们就来看看C#实现... 目录1、连接主机2、订阅消息3、发布消息MQTT(Message Queueing Telemetr

自研四振子全向增益天线! 中兴问天BE6800Pro+路由器拆机和详细评测

《自研四振子全向增益天线!中兴问天BE6800Pro+路由器拆机和详细评测》中兴问天BE6800Pro+路由器已经上市,新品配备自研四振子全向增益天线,售价399元,国补到手339.15元,下面我们... 中兴问天BE6800Pro+路由器自上市以来,凭借其“旗舰性能,中端价格”的定位,以及搭载三颗自研芯片

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

Python日期和时间完全指南与实战

《Python日期和时间完全指南与实战》在软件开发领域,‌日期时间处理‌是贯穿系统设计全生命周期的重要基础能力,本文将深入解析Python日期时间的‌七大核心模块‌,通过‌企业级代码案例‌揭示最佳实践... 目录一、背景与核心价值二、核心模块详解与实战2.1 datetime模块四剑客2.2 时区处理黄金法