书生·浦语大模型第二期实战营第七节-OpenCompass 大模型评测实战 笔记和作业

本文主要是介绍书生·浦语大模型第二期实战营第七节-OpenCompass 大模型评测实战 笔记和作业,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

来源:

视频教程:https://www.bilibili.com/video/BV1Pm41127jU/?spm_id_from=333.788&vd_source=f4a51f7f5a63e756f73ad0dff318c1a3

文字教程:https://github.com/InternLM/Tutorial/blob/camp2/opencompass/readme.md

作业来源:https://github.com/InternLM/Tutorial/blob/camp2/opencompass/homework.md

1. OpenCompass 大模型评测

1.1 如何通过能力评测促进模型发展


面向未来,拓展能力维度:大模型学习人的能力,目前的上限是人的想象力上限,设计数学、推理、代码、智能体等各种维度来评测模型性能。
聚焦垂直行业:大模型在通用领域已经能达到不错的效果,但是在医疗金融法律等需要高精的专业领域,需要更加规范的内容来评估模型的行业适用性。
中文基准:目前全球社区大模型生态以英文为主,通过针对中文场景设计相关评测基准,来促进中文社区的大模型发展。
能力评测反哺能力迭代:通过评测,发现模型不足,针对性提升。

1.2 大语言模型评测中的挑战

全面性:

评测需要综合考量模型在不同维度上的表现,包括语言理解、知识应用、逻辑推理、创造力等。同时,还应考虑模型在特定垂直行业如医疗、金融、法律等领域的专业能力,以及其对新情境的适应性和学习能力。
评测成本:

大模型的评测往往涉及大规模的计算资源和数据集,这导致评测成本显著增加。另外,为了获得全面的评测结果,除了客观的打分题目,还有基于人工打分的主观评测,进一步增加了时间和经济成本。
数据污染:

数据污染指的是评测数据被加入到模型的训练数据中,需要可靠的数据污染检测技术和动态调节的评测基准,来获得真实客观的评估结果。
鲁棒性:

评测大模型时,需要检验其在面对变化的提示词输入的鲁棒性,设计针对鲁棒性的评测数据,例如挖掘大模型的bias(针对顺序的bias、针对长短文本的bias等),在多次采样下评估模型的性能。

1.3 如何评测大模型

基座模型:海量数据无监督训练(Base)

对话模型:指令数据有监督微调(SFT)、人类偏好对齐(RLHF)

1.4 提示词工程

 构建评测集需要对提示词有较高的要求,避免引入评测结果偏差,下面是一些例子,例如文本语义要明确,具体细节,迭代反馈、few-shot、思维链等一些prompt工程化技巧:

1.5 大模型评测全栈工具链

 1.6 评测基准

MathBench:多层次数学能力评测基准,包括不同的难度,不同的语言。还包括循环评估,可以消除大模型对答案顺序的bias。

CriticBench:多维度LLM反思能力评估基准

T-Eval:大模型细粒度工具能力评测基准

F-Eval:大模型基础能力评测基准

CreationBench:多场景中文创作能力评测标准

CIBench:代码解释能力评测标准

 OpenFinData:全场景金融评测基准

LawBench:大模型司法能力基准

MedBench :中文医疗大模型评测基准

SecBench:网络安全评测基准

 2. 作业-使用 OpenCompass 评测 internlm2-chat-1_8b 模型

命令行

python run.py --datasets ceval_gen --hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b --tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True --model-kwargs trust_remote_code=True device_map='auto' --max-seq-len 1024 --max-out-len 16 --batch-size 2 --num-gpus 1 --debug
python run.py
--datasets ceval_gen \
--hf-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace 模型路径
--tokenizer-path /share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b \  # HuggingFace tokenizer 路径(如果与模型路径相同,可以省略)
--tokenizer-kwargs padding_side='left' truncation='left' trust_remote_code=True \  # 构建 tokenizer 的参数
--model-kwargs device_map='auto' trust_remote_code=True \  # 构建模型的参数
--max-seq-len 1024 \  # 模型可以接受的最大序列长度
--max-out-len 16 \  # 生成的最大 token 数
--batch-size 2  \  # 批量大小
--num-gpus 1  # 运行模型所需的 GPU 数量
--debug

protobuf报错

解决方案:

pip install protobuf

评测 

 

这篇关于书生·浦语大模型第二期实战营第七节-OpenCompass 大模型评测实战 笔记和作业的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932877

相关文章

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Spring Boot 与微服务入门实战详细总结

《SpringBoot与微服务入门实战详细总结》本文讲解SpringBoot框架的核心特性如快速构建、自动配置、零XML与微服务架构的定义、演进及优缺点,涵盖开发环境准备和HelloWorld实战... 目录一、Spring Boot 核心概述二、微服务架构详解1. 微服务的定义与演进2. 微服务的优缺点三

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

升级至三频BE12000! 华硕ROG魔盒Pro路由器首发拆解评测

《升级至三频BE12000!华硕ROG魔盒Pro路由器首发拆解评测》华硕前两天推出新一代电竞无线路由器——ROG魔盒Pro(StrixGR7Pro),该产品在无线规格、硬件配置及功能设计上实现全... 作为路由器行业的T1梯队厂商,华硕近期发布了新旗舰华硕ROG魔盒Pro,除了保留DIY属性以外,高达120

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.