Keras 入门课4 -- 使用ResNet识别cifar10数据集

2024-04-24 17:58

本文主要是介绍Keras 入门课4 -- 使用ResNet识别cifar10数据集,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Keras入门课4:使用ResNet识别cifar10数据集

本系列课程代码,欢迎star:
https://github.com/tsycnh/Keras-Tutorials

前面几节课都是用一些简单的网络来做图像识别,这节课我们要使用经典的ResNet网络对cifar10进行分类。

ResNet是何凯明大神提出的残差网络,具体论文见此

ResNet v1
Deep Residual Learning for Image Recognition
https://arxiv.org/pdf/1512.03385.pdf
ResNet v2
Identity Mappings in Deep Residual Networks
https://arxiv.org/pdf/1603.05027.pdf

这一节课,我们只动手实现v1的一个精简版本(因为数据集cifar10的数据比较小)

import keras
from keras.layers import Dense, Conv2D, BatchNormalization, Activation
from keras.layers import AveragePooling2D, Input, Flatten
from keras.optimizers import Adam
from keras.regularizers import l2
from keras import backend as K
from keras.models import Model
from keras.datasets import cifar10
from keras.callbacks import ModelCheckpoint, LearningRateScheduler
from keras.callbacks import ReduceLROnPlateau
import numpy as np
import os
Using TensorFlow backend.
(x_train, y_train), (x_test, y_test) = cifar10.load_data()
Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz
170500096/170498071 [==============================] - 64s 0us/step
x_train = x_train/255
x_test = x_test/255
y_train = keras.utils.to_categorical(y_train,10)
y_test = keras.utils.to_categorical(y_test,10)

↓构建模型基本模块,ResNet Block

这里没有用Sequential模型,而是用了另外一种构建模型的方法,即函数式模型(Functional)
Sequential模型有一个缺陷,即网络只能一层一层的堆叠起来,无法处理分支网络的情况。比如ResNet或GoogleNet中的Inception模块。使用Functional模型,构建起模型来十分自由,可以组合成各种各样的网络,可以说Sequential模型是Functional模型的一个子集。

使用函数式模型很简单,直接在网络层模块后写一个括号,参数就是当前层的输入值,返回值就是当前层的输出值,比如:net = Conv2D(…)(inputs)

这里写图片描述

↓首先构建一个基本的block模块,就是上图的weight layer,这个模块包含了一个卷积层,一个BN层,一个激活层。可以看到上图下面那个layer没有激活层,所以函数内做了一个判断

BN层的作用是对输出参数做归一化,可以有效使网络更易训练。一般来说,加了BN层的网络,可以不必再用Dropout层。
同时这一次我们在卷积层中加入了L2正则化,目的是提升模型的泛化能力。

#ResNet Block
def resnet_block(inputs,num_filters=16,kernel_size=3,strides=

这篇关于Keras 入门课4 -- 使用ResNet识别cifar10数据集的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/932437

相关文章

Swagger2与Springdoc集成与使用详解

《Swagger2与Springdoc集成与使用详解》:本文主要介绍Swagger2与Springdoc集成与使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录1. 依赖配置2. 基础配置2.1 启用 Springdoc2.2 自定义 OpenAPI 信息3.

Golang interface{}的具体使用

《Golanginterface{}的具体使用》interface{}是Go中可以表示任意类型的空接口,本文主要介绍了Golanginterface{}的具体使用,具有一定的参考价值,感兴趣的可以了... 目录一、什么是 interface{}?定义形China编程式:二、interface{} 有什么特别的?✅

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

windows和Linux安装Jmeter与简单使用方式

《windows和Linux安装Jmeter与简单使用方式》:本文主要介绍windows和Linux安装Jmeter与简单使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows和linux安装Jmeter与简单使用一、下载安装包二、JDK安装1.windows设

Spring 缓存在项目中的使用详解

《Spring缓存在项目中的使用详解》Spring缓存机制,Cache接口为缓存的组件规范定义,包扩缓存的各种操作(添加缓存、删除缓存、修改缓存等),本文给大家介绍Spring缓存在项目中的使用... 目录1.Spring 缓存机制介绍2.Spring 缓存用到的概念Ⅰ.两个接口Ⅱ.三个注解(方法层次)Ⅲ.

8种快速易用的Python Matplotlib数据可视化方法汇总(附源码)

《8种快速易用的PythonMatplotlib数据可视化方法汇总(附源码)》你是否曾经面对一堆复杂的数据,却不知道如何让它们变得直观易懂?别慌,Python的Matplotlib库是你数据可视化的... 目录引言1. 折线图(Line Plot)——趋势分析2. 柱状图(Bar Chart)——对比分析3

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

PyTorch中cdist和sum函数使用示例详解

《PyTorch中cdist和sum函数使用示例详解》torch.cdist是PyTorch中用于计算**两个张量之间的成对距离(pairwisedistance)**的函数,常用于点云处理、图神经网... 目录基本语法输出示例1. 简单的 2D 欧几里得距离2. 批量形式(3D Tensor)3. 使用不

C#使用MQTTnet实现服务端与客户端的通讯的示例

《C#使用MQTTnet实现服务端与客户端的通讯的示例》本文主要介绍了C#使用MQTTnet实现服务端与客户端的通讯的示例,包括协议特性、连接管理、QoS机制和安全策略,具有一定的参考价值,感兴趣的可... 目录一、MQTT 协议简介二、MQTT 协议核心特性三、MQTTNET 库的核心功能四、服务端(BR

使用@Cacheable注解Redis时Redis宕机或其他原因连不上继续调用原方法的解决方案

《使用@Cacheable注解Redis时Redis宕机或其他原因连不上继续调用原方法的解决方案》在SpringBoot应用中,我们经常使用​​@Cacheable​​注解来缓存数据,以提高应用的性能... 目录@Cacheable注解Redis时,Redis宕机或其他原因连不上,继续调用原方法的解决方案1