opencv-Features2D+Homography to find a known object

2024-04-24 15:38

本文主要是介绍opencv-Features2D+Homography to find a known object,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

官方地址
#include <stdio.h>
#include <iostream>
#include "opencv2/core.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/features2d.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/calib3d.hpp"
#include "opencv2/xfeatures2d.hpp"
using namespacecv;
using namespacecv::xfeatures2d;
voidreadme();
/* @function main */
intmain(intargc,char** argv )
{
if( argc != 3 )
{ readme();return-1; }
Matimg_object =imread( argv[1],IMREAD_GRAYSCALE);
Matimg_scene =imread( argv[2],IMREAD_GRAYSCALE);
if( !img_object.data|| !img_scene.data)
{ std::cout<<" --(!) Error reading images "<< std::endl;return-1; }
//-- Step 1: Detect the keypoints and extract descriptors using SURF
intminHessian = 400;
Ptr<SURF>detector =SURF::create( minHessian );
std::vector<KeyPoint> keypoints_object, keypoints_scene;
Matdescriptors_object, descriptors_scene;
detector->detectAndCompute( img_object,Mat(), keypoints_object, descriptors_object );
detector->detectAndCompute( img_scene,Mat(), keypoints_scene, descriptors_scene );
//-- Step 2: Matching descriptor vectors using FLANN matcher
FlannBasedMatchermatcher;
std::vector< DMatch > matches;
matcher.match( descriptors_object, descriptors_scene, matches );
doublemax_dist = 0;doublemin_dist = 100;
//-- Quick calculation of max and min distances between keypoints
for(inti = 0; i < descriptors_object.rows; i++ )
{doubledist = matches[i].distance;
if( dist < min_dist ) min_dist = dist;
if( dist > max_dist ) max_dist = dist;
}
printf("-- Max dist : %f \n", max_dist );
printf("-- Min dist : %f \n", min_dist );
//-- Draw only "good" matches (i.e. whose distance is less than 3*min_dist )
std::vector< DMatch > good_matches;
for(inti = 0; i < descriptors_object.rows; i++ )
{if( matches[i].distance <= 3*min_dist )
{ good_matches.push_back( matches[i]); }
}
Matimg_matches;
drawMatches( img_object, keypoints_object, img_scene, keypoints_scene,
good_matches, img_matches,Scalar::all(-1),Scalar::all(-1),
std::vector<char>(),DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS);
//-- Localize the object
std::vector<Point2f> obj;
std::vector<Point2f> scene;
for(size_ti = 0; i < good_matches.size(); i++ )
{
//-- Get the keypoints from the good matches
obj.push_back( keypoints_object[ good_matches[i].queryIdx ].pt );
scene.push_back( keypoints_scene[ good_matches[i].trainIdx ].pt );
}
MatH =findHomography( obj, scene,RANSAC);
//-- Get the corners from the image_1 ( the object to be "detected" )
std::vector<Point2f> obj_corners(4);
obj_corners[0] =cvPoint(0,0); obj_corners[1] =cvPoint( img_object.cols, 0 );
obj_corners[2] =cvPoint( img_object.cols, img_object.rows); obj_corners[3] =cvPoint( 0, img_object.rows);
std::vector<Point2f> scene_corners(4);
perspectiveTransform( obj_corners, scene_corners, H);
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
line( img_matches, scene_corners[0] +Point2f( img_object.cols, 0), scene_corners[1] +Point2f( img_object.cols, 0),Scalar(0, 255, 0), 4 );
line( img_matches, scene_corners[1] +Point2f( img_object.cols, 0), scene_corners[2] +Point2f( img_object.cols, 0),Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[2] +Point2f( img_object.cols, 0), scene_corners[3] +Point2f( img_object.cols, 0),Scalar( 0, 255, 0), 4 );
line( img_matches, scene_corners[3] +Point2f( img_object.cols, 0), scene_corners[0] +Point2f( img_object.cols, 0),Scalar( 0, 255, 0), 4 );
//-- Show detected matches
imshow("Good Matches & Object detection", img_matches );
waitKey(0);
return0;
}
/* @function readme */
voidreadme()
{ std::cout <<" Usage: ./SURF_descriptor <img1> <img2>"<< std::endl; }








    这篇关于opencv-Features2D+Homography to find a known object的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



    http://www.chinasem.cn/article/932138

    相关文章

    OpenCV在Java中的完整集成指南分享

    《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

    在Java中使用OpenCV实践

    《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

    Python错误AttributeError: 'NoneType' object has no attribute问题的彻底解决方法

    《Python错误AttributeError:NoneTypeobjecthasnoattribute问题的彻底解决方法》在Python项目开发和调试过程中,经常会碰到这样一个异常信息... 目录问题背景与概述错误解读:AttributeError: 'NoneType' object has no at

    Python使用OpenCV实现获取视频时长的小工具

    《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

    Python如何将OpenCV摄像头视频流通过浏览器播放

    《Python如何将OpenCV摄像头视频流通过浏览器播放》:本文主要介绍Python如何将OpenCV摄像头视频流通过浏览器播放的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完... 目录方法1:使用Flask + MJPEG流实现代码使用方法优点缺点方法2:使用WebSocket传输视

    使用Python和OpenCV库实现实时颜色识别系统

    《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

    OpenCV实现实时颜色检测的示例

    《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

    Python中OpenCV与Matplotlib的图像操作入门指南

    《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

    C/C++中OpenCV 矩阵运算的实现

    《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

    C/C++的OpenCV 进行图像梯度提取的几种实现

    《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y