【python】python新闻文本数据统计和聚类 (源码+文本)【独一无二】

2024-04-24 00:44

本文主要是介绍【python】python新闻文本数据统计和聚类 (源码+文本)【独一无二】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

请添加图片描述


👉博__主👈:米码收割机
👉技__能👈:C++/Python语言
👉公众号👈:测试开发自动化【获取源码+商业合作】
👉荣__誉👈:阿里云博客专家博主、51CTO技术博主
👉专__注👈:专注主流机器人、人工智能等相关领域的开发、测试技术。


【python】python新闻文本数据统计和聚类 (源码+文本)【独一无二】


目录

  • 【python】python新闻文本数据统计和聚类 (源码+文本)【独一无二】
  • 一、设计要求
  • 二、功能展示
    • 2.1. 去除停用词
    • 2.2 关键词提取
    • 2.3. 聚类群集
    • 2.4. 聚类可视化
  • 三、代码解析
      • 1. 导入库和设置基本信息
      • 2. 读取中文停用词
      • 3. 文本预处理函数
      • 4. 提取文件夹内所有文件的预处理文本
      • 5. 使用TF-IDF进行向量化
      • 6. 执行KMeans聚类
      • 7. 输出每个文件的聚类结果
      • 8. 关键词提取
      • 9. 展示每个文本的关键词
      • 10. 使用PCA进行降维并绘制聚类结果


一、设计要求

新闻文本数据存储于文件“新闻文本”文件夹中

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 新闻文本聚类 ” 获取。👈👈👈

使用Python完成如下内容:

(1)使用代码打开给定文件夹中的文本文件进行内容读取,提取摘要内容(AB
标签内容)进行文本预处理(分词、停用词“中文停用词.txt”去除等),并展示结果;

(2)提取每个 text 文本的关键词(词频或其他方法)并展示结果;

(3)使用词频或其他方法对每个 txt 进行向量表示,并基于此对文档进行聚类。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 新闻文本聚类 ” 获取。👈👈👈


二、功能展示

2.1. 去除停用词

在这里插入图片描述

2.2 关键词提取

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 新闻文本聚类 ” 获取。👈👈👈

2.3. 聚类群集

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 新闻文本聚类 ” 获取。👈👈👈

2.4. 聚类可视化

在这里插入图片描述

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 新闻文本聚类 ” 获取。👈👈👈


三、代码解析

1. 导入库和设置基本信息

import os
import jieba
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
import numpy as npplt.rcParams["font.sans-serif"] = ["SimHei"]folder_path = r'.\新闻文本'

首先,导入了所需的库,并设置了文件夹路径。代码中使用了jieba进行中文分词,TfidfVectorizer进行TF-IDF特征提取,KMeans进行文本聚类,matplotlib进行可视化,以及PCA进行数据降维。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 新闻文本聚类 ” 获取。👈👈👈

2. 读取中文停用词

with open('中文停用词.txt', 'r', encoding='utf-8') as f:stop_words = [line.strip() for line in f.readlines()]

这部分代码读取了中文停用词表,并将其存储在stop_words列表中。停用词通常是指在信息检索中,为节省存储空间和提高搜索效率,在处理自然语言数据(或文本)之前或之后会自动过滤掉的字词。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 新闻文本聚类 ” 获取。👈👈👈

3. 文本预处理函数

def preprocess_text(file_path, stop_words):with open(file_path, 'r', encoding='gbk') as file:text = file.read()# 略....words = [word for word in words if word not in stop_words]return ' '.join(words)

该函数接收文件路径和停用词列表作为参数,读取文件内容,然后使用jieba进行中文分词,最后去除停用词并返回处理后的文本。

4. 提取文件夹内所有文件的预处理文本

texts = []
for file_name in os.listdir(folder_path):if file_name.endswith('.txt'):file_path = os.path.join(folder_path, file_name)try:# 略....except:continue

这部分代码遍历指定文件夹内的所有.txt文件,对每个文件调用预处理函数,并将处理后的文本添加到texts列表中。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 新闻文本聚类 ” 获取。👈👈👈

5. 使用TF-IDF进行向量化

vectorizer = TfidfVectorizer()
tfidf_matrix = vectorizer.fit_transform(texts)

这里使用TfidfVectorizer对预处理后的文本进行TF-IDF向量化,将文本转换为TF-IDF特征矩阵。

6. 执行KMeans聚类

num_clusters = 5
km = KMeans(n_clusters=num_clusters)
# 略....

使用KMeans算法对TF-IDF特征矩阵进行聚类,将文本数据分为预设的5个类别(num_clusters=5)。

7. 输出每个文件的聚类结果

clusters = km.labels_.tolist()
for file_name, cluster in zip(file_names, clusters):print(f'{file_name} 属于群集 {cluster}')

这部分代码输出了每个文件所属的聚类结果。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 新闻文本聚类 ” 获取。👈👈👈

8. 关键词提取

def extract_keywords(tfidf_matrix, vectorizer, top_n=5):indices = tfidf_matrix.toarray().argsort(axis=1)feature_names = vectorizer.get_feature_names_out()# 略....return keywords_list

这个函数用于从TF-IDF特征矩阵中提取关键词,选取每个文本中TF-IDF分数最高的词作为关键词。

9. 展示每个文本的关键词

keywords = extract_keywords(tfidf_matrix, vectorizer)
for file_name, keyword in zip(file_names, keywords):print(f'{file_name} 的关键词: {keyword}')

这部分代码展示了每个文本的关键词。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 新闻文本聚类 ” 获取。👈👈👈

10. 使用PCA进行降维并绘制聚类结果

pca = PCA(n_components=2)
two_dim_data = pca.fit_transform(tfidf_matrix.toarray())

这里使用PCA将TF-IDF特征矩阵降维到2维,以便于可视化展示。

plt.figure(figsize=(10, 10))
for i in range(num_clusters):points = two_dim_data[np.array(clusters) == i]plt.scatter(points[:, 0], points[:, 1], label=f'Cluster {i}')centers = pca.transform(km.cluster_centers_)
plt.scatter(centers[:, 0], centers[:, 1], s=100, c='black', marker='x', label='Centers')plt.title('KMeans聚类可视化')
plt.xlabel('PCA Feature 1')
plt.ylabel('PCA Feature 2')
plt.legend()
plt.show()

这段代码绘制了聚类结果的可视化图像,每个聚类用不同颜色表示,聚类中心用黑色叉号标记。

👉👉👉 源码获取 关注【测试开发自动化】公众号,回复 “ 新闻文本聚类 ” 获取。👈👈👈

这篇关于【python】python新闻文本数据统计和聚类 (源码+文本)【独一无二】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/930326

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核