ADOP带您了解高性能GPU服务器基础知识(下篇)

2024-04-23 11:12

本文主要是介绍ADOP带您了解高性能GPU服务器基础知识(下篇),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

众所周知,在大型模型训练中,通常采用每台服务器配备多个GPU的集群架构。在上一篇文章《    》中,我们对GPU网络中的核心术语与概念进行了详尽介绍。本文将进一步深入探讨常见的GPU系统架构。

📈8台配备NVIDIA A100 GPU的节点/8台配备NVIDIA A800 GPU的节点

Typical 8-card A100 host hardware topology

如上图所示的A100 GPU拓扑结构中,8块A100 GPU所组成的拓扑包含以下组件:

  • 两颗CPU芯片(及其两侧相关的内存,NUMA架构):中央处理器负责执行通用计算任务。

  • 两块存储网络适配卡(用于访问分布式存储,具备带内管理等功能):这些网卡用于访问分布式存储资源。

  • 四颗PCIe Gen4交换芯片:PCIe Gen4是PCIe接口的第四代,提供了更高的数据传输速率。

  • 六颗NVSwitch芯片:NVSwitch使得GPU与GPU之间能够以极高的速度直接通信,这对于大规模深度学习节点和并行计算任务的有效运行至关重要。

  • 八块GPU:A100 GPU作为主要处理单元,负责执行并行计算,尤其适合人工智能和深度学习工作负载。

  • 八块GPU专用网络适配卡:每块GPU配备一块专用的网络适配卡,旨在优化GPU之间的通信,并提升并行处理任务的整体性能。

接下来的部分我们将对这些组件进行详细解读。

下一张图片将提供更详尽的拓扑结构信息供参考。

NVIDIA DGX A100 host (official 8-card machine) hardware topology

🔗存储网络卡

在GPU架构中,存储网络卡的定位主要涉及其通过PCIe总线与中央处理器(CPU)的连接,以及负责促进与分布式存储系统的通信。以下是存储网络卡在GPU架构中的主要作用:

  • 读写分布式存储数据:存储网络卡的主要功能之一是高效地从分布式存储系统读取和写入数据。这对于深度学习模型训练过程至关重要,在此过程中频繁访问分布在各处的训练数据以及将训练结果写入检查点文件极为重要。

  • 节点管理任务:存储网络卡的功能不仅限于数据传输,还包括节点管理任务。这包括但不限于通过SSH(安全外壳协议)进行远程登录、监控系统性能以及收集相关数据等任务。这些任务有助于对GPU集群的运行状态进行监控和维护。

虽然官方推荐使用BF3 DPU,但在实践中,只要满足带宽需求,可以选用其他替代解决方案。例如,为了成本效益考虑,可以考虑使用RoCE;而为了最大限度提升性能,则优先选择InfiniBand。

🔧NVSwitch 网络结构

在完全互联网络拓扑中,每个节点都直接与所有其他节点相连。通常情况下,8块GPU通过六个NVSwitch芯片以全互联配置相连接,这一整体也被称为NVSwitch架构。

在全互联结构中,每条线路的带宽取决于单个NVLink通道的带宽,表示为n * bw-per-nvlink-lane。对于采用NVLink3技术、每条通道带宽为50GB/s的A100 GPU,在全互联结构中,每条线路的总带宽为12 * 50GB/s = 600GB/s。需要注意的是,此带宽是双向的,既支持数据发送也支持接收,因此单向带宽为300GB/s。

相比之下,A800 GPU将NVLink通道的数量从12减少到了8。因此,在全互联结构中,每条线路的总带宽变为8 * 50GB/s = 400GB/s,单向带宽为200GB/s。

以下是一个由8*A800组成的设备的nvidia-smi拓扑结构图示。

nvidia-smi topology for an 8*A800 machine

    • GPU与GPU之间的连接(左上区域):

所有连接均标记为NV8,表示有8条NVLink连接。

    • 网络接口卡(NIC)连接:

在同一CPU芯片内:标记为NODE,表示无需跨越NUMA结构,但需要穿越PCIe交换芯片。

在不同CPU芯片之间:标记为SYS,表示必须跨越NUMA结构。

    • GPU至NIC的连接:

在同一CPU芯片内且处于同一PCIe交换芯片下:标识为NODE,表示仅需穿越PCIe交换芯片。

在同一CPU芯片内但不在同一PCIe交换芯片下:指定为NNODE,表示需要同时穿越PCIe交换芯片和PCIe主机桥接芯片。

在不同CPU芯片之间:标记为SYS,表示需要跨越NUMA结构、PCIe交换芯片,并覆盖最长距离。

🌵GPU节点互联架构

以下图表展示了GPU节点间的互联架构:

GPU node interconnection architecture

🛫计算网络

计算网络主要用于连接GPU节点,支持并行计算任务之间的协同工作。这包括在多块GPU之间传输数据、共享计算结果以及协调大规模并行计算任务的执行。

🛫存储网络

存储网络用于连接GPU节点和存储系统,支持大规模数据的读写操作。这包括将数据从存储系统加载到GPU内存中,以及将计算结果写回存储系统。

为了满足AI应用对高性能的需求,在计算网络和存储网络上,RDMA(远程直接内存访问)技术至关重要。在两种RDMA技术——RoCEv2和InfiniBand之间进行选择时,需要权衡成本效益与卓越性能,每种选项都针对特定应用场景和预算考虑进行了优化。

公共云服务提供商通常在其配置中采用RoCEv2网络,例如CX配置,其中包含8个GPU实例,每个实例配备8 * 100Gbps。与其他选项相比,只要能满足性能要求,RoCEv2相对较为经济实惠。

🛫数据链路连接中的带宽瓶颈

Single-machine 8-card A100 GPU host bandwidth bottleneck analysis

该图表突出了关键连接的带宽规格:

  • 同一主机内GPU之间的通信:通过NVLink技术,双向带宽达到600GB/s,单向带宽达到300GB/s。

  • 同一主机内GPU与其各自网络接口卡(NIC)之间的通信:采用PCIe Gen4交换芯片,双向带宽为64GB/s,单向带宽为32GB/s。

  • 不同主机间GPU之间的通信:数据传输依赖于NIC,带宽取决于所使用的具体NIC。当前在中国,对于A100/A800型号常用的NIC提供主流的单向带宽为100Gbps(12.5GB/s)。因此,相较于同一主机内的通信,不同主机间的GPU通信性能显著下降。

200Gbps(25GB/s)接近PCIe Gen4的单向带宽。

400Gbps(50GB/s)超越了PCIe Gen4的单向带宽。

因此,在此类配置中使用400Gbps的网卡并不能带来显著优势,因为要充分利用400Gbps带宽需要PCIe Gen5级别的性能支持。

🎯8x NVIDIA H100/8x NVIDIA H800 主机

📚H100主机内部的硬件拓扑结构

H100主机的整体硬件架构与A100八卡系统的架构非常相似,但也存在一些差异,主要体现在NVSwitch芯片的数量和带宽升级上。

Hardware Topology Within H100 Host

  • 在每个H100主机内部,配置了4颗芯片,比A100配置减少了两颗。

  • H100芯片采用4纳米工艺制造,底部一行配备了18条Gen4 NVLink连接,从而提供了900GB/s的双向总带宽。

📚H100 GPU 芯片

Single-chip H100 GPU internal logical layout

  • 该芯片采用尖端的4纳米工艺制造,表明其采用了先进的制造技术。

  • 芯片底部一排包含18个Gen4 NVLink连接,提供双向总带宽为18条通道 * 每通道25GB/s = 900GB/s。

  • 芯片中央蓝色区域代表L2高速缓存,用于存储临时数据的高速缓冲区。

  • 芯片左右两侧则集成了HBM(高带宽内存)芯片,这些芯片作为图形内存使用,存储图形处理所需的数据。

📚网络连接方面

H100在联网方面与A100相似,唯一的不同之处在于其标准配置包含了​  400Gbps的CX7网卡。

这篇关于ADOP带您了解高性能GPU服务器基础知识(下篇)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/928629

相关文章

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

Windows Server 2025 搭建NPS-Radius服务器的步骤

《WindowsServer2025搭建NPS-Radius服务器的步骤》本文主要介绍了通过微软的NPS角色实现一个Radius服务器,身份验证和证书使用微软ADCS、ADDS,具有一定的参考价... 目录简介示意图什么是 802.1X?核心作用802.1X的组成角色工作流程简述802.1X常见应用802.

使用Nginx配置文件服务器方式

《使用Nginx配置文件服务器方式》:本文主要介绍使用Nginx配置文件服务器方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 为什么选择 Nginx 作为文件服务器?2. 环境准备3. 配置 Nginx 文件服务器4. 将文件放入服务器目录5. 启动 N

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

C#实现高性能Excel百万数据导出优化实战指南

《C#实现高性能Excel百万数据导出优化实战指南》在日常工作中,Excel数据导出是一个常见的需求,然而,当数据量较大时,性能和内存问题往往会成为限制导出效率的瓶颈,下面我们看看C#如何结合EPPl... 目录一、技术方案核心对比二、各方案选型建议三、性能对比数据四、核心代码实现1. MiniExcel

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

springboot上传zip包并解压至服务器nginx目录方式

《springboot上传zip包并解压至服务器nginx目录方式》:本文主要介绍springboot上传zip包并解压至服务器nginx目录方式,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录springboot上传zip包并解压至服务器nginx目录1.首先需要引入zip相关jar包2.然

将Java项目提交到云服务器的流程步骤

《将Java项目提交到云服务器的流程步骤》所谓将项目提交到云服务器即将你的项目打成一个jar包然后提交到云服务器即可,因此我们需要准备服务器环境为:Linux+JDK+MariDB(MySQL)+Gi... 目录1. 安装 jdk1.1 查看 jdk 版本1.2 下载 jdk2. 安装 mariadb(my