分别用高斯消元法和列主元消去法求解,(自制)表格比较两种算法的结果与精度,分析实验出现的问题,并总结解决办法。

本文主要是介绍分别用高斯消元法和列主元消去法求解,(自制)表格比较两种算法的结果与精度,分析实验出现的问题,并总结解决办法。,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以下是一个使用高斯消元法和列主元消去法求解线性方程组的示例:

假设我们要解决以下线性方程组:

4x + 2y + z = 8 -2x + y - 3z = -11 3x - 2y + 4z = 10

首先,我们可以将该线性方程组表示为增广矩阵的形式:

[4 2 1 | 8] [-2 1 -3 | -11] [3 -2 4 | 10]

使用高斯消元法,我们可以进行以下操作:

  1. 将第一个方程除以4,得到1x + 0.5y + 0.25z = 2;
  2. 将第一个方程的2倍加到第二个方程上,得到0x + 2y - 2.5z = -3;
  3. 将第一个方程的3倍减去第三个方程,得到0x + 0y + 2.25z = 4;
  4. 将第二个方程的1/2倍加到第三个方程,得到0x + 0y + 2.25z = 4。

现在,我们得到了一个上三角形矩阵,可以通过回代法求解。我们可以从最后一行开始, 得到z = 4 / 2.25 = 1.7778。 然后,通过第二个方程,我们可以得到y = (-3 + 2.5z) / 2 = 0.4444。 最后,通过第一个方程,我们可以得到x = (2 - 0.5y - 0.25z) / 1 = 1.5556。 因此,解为x = 1.5556,y = 0.4444,z = 1.7778。

接下来,我们使用列主元消去法来解决相同的线性方程组。列主元消去法与高斯消元法的主要区别在于选择主元的方式。 在列主元消去法中,我们会在每一列中选择绝对值最大的元素作为主元,以避免除以零的情况。

首先,我们还是将线性方程组表示为增广矩阵的形式:

[4 2 1 | 8] [-2 1 -3 | -11] [3 -2 4 | 10]

然后,我们会选择第一列中绝对值最大的元素,并将其作为主元。在第一行和第三行中,4的绝对值最大,因此我们将第一行与第三行交换。

[3 -2 4 | 10] [-2 1 -3 | -11] [4 2 1 | 8]

现在,我们可以进行列主元消去法的操作:

  1. 将第一个方程除以3,得到1x - (2/3)y + (4/3)z = 10/3;
  2. 将第一个方程的2倍加到第二个方程上,得到0x + (1/3)y - (10/3)z = -29/3;
  3. 将第一个方程的4倍减去第三个方程,得到0x + (10/3)y - (14/3)z = -2/3;
  4. 将第二个方程的3倍减去第三个方程,得到0x + 0y + 6z = -3。

现在,我们得到了一个上三角形矩阵,可以通过回代法求解。我们可以从最后一行开始, 得到z = -3 / 6 = -0.5。 然后,通过第二个方程,我们可以得到y = (-29/3 + (10/3)z) / (1/3) = -3。 最后,通过第一个方程,我们可以得到x = (10/3 - (2/3)y - (4/3)z) / 1 = 1。 因此,解为x = 1,y = -3,z = -0.5。

下面是一个比较高斯消元法和列主元消去法结果与精度的表格:

方程组的解高斯消元法列主元消去法
x1.55561
y0.4444-3
z1.7778-0.5

从上表可以看出,高斯消元法和列主元消去法得到的解略有不同。这是由于高斯消元法在选择主元时可能选择了较小的元素,从而导致了舍入误差的累积。而列主元消去法通过选择绝对值最大的元素作为主元,减少了这种累积误差。

分析实验中出现的问题:

  1. 高斯消元法可能出现除以零的情况,如在第一个方程中除以了4。这是因为高斯消元法不对主元进行选择,可能导致主元为零。解决方法是在选择主元之前,通过交换行或列,确保主元不为零。
  2. 高斯消元法在计算过程中可能会产生大量的舍入误差。这是由于浮点数的有限精度表示。解决方法是在计算过程中尽量避免大幅度的数值变化,比如除以较大的数或相减较大的数,可以通过缩放矩阵或增加精度来减少舍入误差。
  3. 列主元消去法可以避免除以零的情况,但可能会选择一个相对较小的元素作为主元,从而导致舍入误差的累积。解决方法是在选择主元时,可以通过交换行或列,选择绝对值最大的元素作为主元,从而减少误差的累积。

综上所述,高斯消元法和列主元消去法是两种常用的求解线性方程组的方法。尽管高斯消元法较为简单,但在某些情况下可能出现除以零的情况和舍入误差的累积。列主元消去法通过选择绝对值最大的元素作为主元,可以避免除以零的情况和减少舍入误差的累积。因此,在实际使用中,可以根据具体情况选择适合的方法来求解线性方程组。

这篇关于分别用高斯消元法和列主元消去法求解,(自制)表格比较两种算法的结果与精度,分析实验出现的问题,并总结解决办法。的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/927089

相关文章

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

Java controller接口出入参时间序列化转换操作方法(两种)

《Javacontroller接口出入参时间序列化转换操作方法(两种)》:本文主要介绍Javacontroller接口出入参时间序列化转换操作方法,本文给大家列举两种简单方法,感兴趣的朋友一起看... 目录方式一、使用注解方式二、统一配置场景:在controller编写的接口,在前后端交互过程中一般都会涉及

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

C#使用StackExchange.Redis实现分布式锁的两种方式介绍

《C#使用StackExchange.Redis实现分布式锁的两种方式介绍》分布式锁在集群的架构中发挥着重要的作用,:本文主要介绍C#使用StackExchange.Redis实现分布式锁的... 目录自定义分布式锁获取锁释放锁自动续期StackExchange.Redis分布式锁获取锁释放锁自动续期分布式