一种简单的贝塞尔插值算法

2024-04-22 01:38

本文主要是介绍一种简单的贝塞尔插值算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载地址:http://www.antigrain.com/research/bezier_interpolation/index.html#PAGE_BEZIER_INTERPOLATION

Interpolation with Bezier Curves
A very simple method of smoothing polygons

Initially, there was a question in comp.graphic.algorithms how to interpolate a polygon with a curve in such a way that the resulting curve would be smooth and hit all its vertices. Gernot Hoffmann suggested to use a well-known  B-Spline interpolation. Here is his original article. B-Spline works good and it behaves like an elastic ruler fixed in the polygon vertices.

 

 

But I had a gut feeling that there must be a simpler method. For example, approximation with cubic Bezier curves. A Bezier curve has two anchor points (begin and end) and two control ones (CP) that determine its shape. More information about Bezier curves can be found using any search engine, for example, on Paul Bourke's excellent site. Our anchor points are given, they are pair of vertices of the polygon. The question was, how to calculate the control points. I ran  Xara X and drew this picture. It was pretty easy and I decided to try to calculate their coordinates. It was obvious that the control points of two adjacent edges plus the vertex between them should form one straight line. Only in this case the two adjacent curves will be connected smoothly. So, the two CP should be the a reflection of each other, but… not quite. Reflection assumes equal distances from the central point. For our case it's not correct. First, I tried to calculate a bisectrix between two edges and then take points on the perpendicular to it. But as shown in the picture, the CP not always lie on the perpendicular to thebisectrix.

 

Finally, I found a very simple method that does not require any complicated math. First, we take the polygon and calculate the middle points Ai of its edges.

 

Here we have line segments Ci that connect two points Aiof the adjacent segments. Then, we should calculate points Bi as shown in this picture.

 

The third step is final. We simply move the line segments Ci in such a way that their points Bicoincide with the respective vertices. That's it, we calculated the control points for our Bezier curve and the result looks good.

 

One little improvement. Since we have a straight line that determines the place of our control points, we can move them as we want, changing the shape of the resulting curve. I used a simple coefficient K that moves the points along the line relatively to the initial distance between vertices and control points. The closer the control points to the vertices are the sharper figure will be obtained.

 

Below is the result of rendering a popular in SVG lion in its original form and with Bezier interpolation with K=1.0

 

 

And the enlarged ones.

 

 

The method works quite well with self-intersecting polygons. The examples below show that the result is pretty interesting.


 

 

 

This method is pure heuristic and empiric. It probably gives a wrong result from the point of view of strict mathematical modeling. But in practice the result is good enough and it requires absolute minimum of calculations. Below is the source code that has been used to generate the lions shown above. It's not optimal and just an illustration. It calculates some variables twice, while in real programs we can store and reuse them in the consecutive steps.

    // Assume we need to calculate the control// points between (x1,y1) and (x2,y2).// Then x0,y0 - the previous vertex,//      x3,y3 - the next one.double xc1 = (x0 + x1) / 2.0;double yc1 = (y0 + y1) / 2.0;double xc2 = (x1 + x2) / 2.0;double yc2 = (y1 + y2) / 2.0;double xc3 = (x2 + x3) / 2.0;double yc3 = (y2 + y3) / 2.0;double len1 = sqrt((x1-x0) * (x1-x0) + (y1-y0) * (y1-y0));double len2 = sqrt((x2-x1) * (x2-x1) + (y2-y1) * (y2-y1));double len3 = sqrt((x3-x2) * (x3-x2) + (y3-y2) * (y3-y2));double k1 = len1 / (len1 + len2);double k2 = len2 / (len2 + len3);double xm1 = xc1 + (xc2 - xc1) * k1;double ym1 = yc1 + (yc2 - yc1) * k1;double xm2 = xc2 + (xc3 - xc2) * k2;double ym2 = yc2 + (yc3 - yc2) * k2;// Resulting control points. Here smooth_value is mentioned// above coefficient K whose value should be in range [0...1].ctrl1_x = xm1 + (xc2 - xm1) * smooth_value + x1 - xm1;ctrl1_y = ym1 + (yc2 - ym1) * smooth_value + y1 - ym1;ctrl2_x = xm2 + (xc2 - xm2) * smooth_value + x2 - xm2;ctrl2_y = ym2 + (yc2 - ym2) * smooth_value + y2 - ym2;



And the source code of an approximation with a cubic Bezier curve.

// Number of intermediate points between two source ones,
// Actually, this value should be calculated in some way,
// Obviously, depending on the real length of the curve.
// But I don't know any elegant and fast solution for this
// problem.
#define NUM_STEPS 20void curve4(Polygon* p,double x1, double y1,   //Anchor1double x2, double y2,   //Control1double x3, double y3,   //Control2double x4, double y4)   //Anchor2
{double dx1 = x2 - x1;double dy1 = y2 - y1;double dx2 = x3 - x2;double dy2 = y3 - y2;double dx3 = x4 - x3;double dy3 = y4 - y3;double subdiv_step  = 1.0 / (NUM_STEPS + 1);double subdiv_step2 = subdiv_step*subdiv_step;double subdiv_step3 = subdiv_step*subdiv_step*subdiv_step;double pre1 = 3.0 * subdiv_step;double pre2 = 3.0 * subdiv_step2;double pre4 = 6.0 * subdiv_step2;double pre5 = 6.0 * subdiv_step3;double tmp1x = x1 - x2 * 2.0 + x3;double tmp1y = y1 - y2 * 2.0 + y3;double tmp2x = (x2 - x3)*3.0 - x1 + x4;double tmp2y = (y2 - y3)*3.0 - y1 + y4;double fx = x1;double fy = y1;double dfx = (x2 - x1)*pre1 + tmp1x*pre2 + tmp2x*subdiv_step3;double dfy = (y2 - y1)*pre1 + tmp1y*pre2 + tmp2y*subdiv_step3;double ddfx = tmp1x*pre4 + tmp2x*pre5;double ddfy = tmp1y*pre4 + tmp2y*pre5;double dddfx = tmp2x*pre5;double dddfy = tmp2y*pre5;int step = NUM_STEPS;// Suppose, we have some abstract object Polygon which// has method AddVertex(x, y), similar to LineTo in// many graphical APIs.// Note, that the loop has only operation add!while(step--){fx   += dfx;fy   += dfy;dfx  += ddfx;dfy  += ddfy;ddfx += dddfx;ddfy += dddfy;p->AddVertex(fx, fy);}p->AddVertex(x4, y4); // Last step must go exactly to x4, y4
}

You can download a working application for Windows that renders the lion, rotates and scales it, and generates random polygons. Interpolation with Bezier curves  (bezier_interpolation.zip). Press left mouse button and drag to rotate and scale the image around the center point. Press right mouse button and drag left-right to change the coefficient of smoothing (K). Value K=1 is about 100 pixels from the left border of the window. Each left double-click generates a random polygon. You can also rotate and scale it, and change K.

 
Copyright © 2002-2006 Maxim Shemanarev
Web Design and Programming Maxim Shemanarev

这篇关于一种简单的贝塞尔插值算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924541

相关文章

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

python连接sqlite3简单用法完整例子

《python连接sqlite3简单用法完整例子》SQLite3是一个内置的Python模块,可以通过Python的标准库轻松地使用,无需进行额外安装和配置,:本文主要介绍python连接sqli... 目录1. 连接到数据库2. 创建游标对象3. 创建表4. 插入数据5. 查询数据6. 更新数据7. 删除

Jenkins的安装与简单配置过程

《Jenkins的安装与简单配置过程》本文简述Jenkins在CentOS7.3上安装流程,包括Java环境配置、RPM包安装、修改JENKINS_HOME路径及权限、启动服务、插件安装与系统管理设置... 目录www.chinasem.cnJenkins安装访问并配置JenkinsJenkins配置邮件通知

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

C# $字符串插值的使用

《C#$字符串插值的使用》本文介绍了C#中的字符串插值功能,详细介绍了使用$符号的实现方式,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录$ 字符使用方式创建内插字符串包含不同的数据类型控制内插表达式的格式控制内插表达式的对齐方式内插表达式中使用转义序列内插表达式中使用

Java中使用 @Builder 注解的简单示例

《Java中使用@Builder注解的简单示例》@Builder简化构建但存在复杂性,需配合其他注解,导致可变性、抽象类型处理难题,链式编程非最佳实践,适合长期对象,避免与@Data混用,改用@G... 目录一、案例二、不足之处大多数同学使用 @Builder 无非就是为了链式编程,然而 @Builder

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

windows和Linux安装Jmeter与简单使用方式

《windows和Linux安装Jmeter与简单使用方式》:本文主要介绍windows和Linux安装Jmeter与简单使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows和linux安装Jmeter与简单使用一、下载安装包二、JDK安装1.windows设