一种简单的贝塞尔插值算法

2024-04-22 01:38

本文主要是介绍一种简单的贝塞尔插值算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

转载地址:http://www.antigrain.com/research/bezier_interpolation/index.html#PAGE_BEZIER_INTERPOLATION

Interpolation with Bezier Curves
A very simple method of smoothing polygons

Initially, there was a question in comp.graphic.algorithms how to interpolate a polygon with a curve in such a way that the resulting curve would be smooth and hit all its vertices. Gernot Hoffmann suggested to use a well-known  B-Spline interpolation. Here is his original article. B-Spline works good and it behaves like an elastic ruler fixed in the polygon vertices.

 

 

But I had a gut feeling that there must be a simpler method. For example, approximation with cubic Bezier curves. A Bezier curve has two anchor points (begin and end) and two control ones (CP) that determine its shape. More information about Bezier curves can be found using any search engine, for example, on Paul Bourke's excellent site. Our anchor points are given, they are pair of vertices of the polygon. The question was, how to calculate the control points. I ran  Xara X and drew this picture. It was pretty easy and I decided to try to calculate their coordinates. It was obvious that the control points of two adjacent edges plus the vertex between them should form one straight line. Only in this case the two adjacent curves will be connected smoothly. So, the two CP should be the a reflection of each other, but… not quite. Reflection assumes equal distances from the central point. For our case it's not correct. First, I tried to calculate a bisectrix between two edges and then take points on the perpendicular to it. But as shown in the picture, the CP not always lie on the perpendicular to thebisectrix.

 

Finally, I found a very simple method that does not require any complicated math. First, we take the polygon and calculate the middle points Ai of its edges.

 

Here we have line segments Ci that connect two points Aiof the adjacent segments. Then, we should calculate points Bi as shown in this picture.

 

The third step is final. We simply move the line segments Ci in such a way that their points Bicoincide with the respective vertices. That's it, we calculated the control points for our Bezier curve and the result looks good.

 

One little improvement. Since we have a straight line that determines the place of our control points, we can move them as we want, changing the shape of the resulting curve. I used a simple coefficient K that moves the points along the line relatively to the initial distance between vertices and control points. The closer the control points to the vertices are the sharper figure will be obtained.

 

Below is the result of rendering a popular in SVG lion in its original form and with Bezier interpolation with K=1.0

 

 

And the enlarged ones.

 

 

The method works quite well with self-intersecting polygons. The examples below show that the result is pretty interesting.


 

 

 

This method is pure heuristic and empiric. It probably gives a wrong result from the point of view of strict mathematical modeling. But in practice the result is good enough and it requires absolute minimum of calculations. Below is the source code that has been used to generate the lions shown above. It's not optimal and just an illustration. It calculates some variables twice, while in real programs we can store and reuse them in the consecutive steps.

    // Assume we need to calculate the control// points between (x1,y1) and (x2,y2).// Then x0,y0 - the previous vertex,//      x3,y3 - the next one.double xc1 = (x0 + x1) / 2.0;double yc1 = (y0 + y1) / 2.0;double xc2 = (x1 + x2) / 2.0;double yc2 = (y1 + y2) / 2.0;double xc3 = (x2 + x3) / 2.0;double yc3 = (y2 + y3) / 2.0;double len1 = sqrt((x1-x0) * (x1-x0) + (y1-y0) * (y1-y0));double len2 = sqrt((x2-x1) * (x2-x1) + (y2-y1) * (y2-y1));double len3 = sqrt((x3-x2) * (x3-x2) + (y3-y2) * (y3-y2));double k1 = len1 / (len1 + len2);double k2 = len2 / (len2 + len3);double xm1 = xc1 + (xc2 - xc1) * k1;double ym1 = yc1 + (yc2 - yc1) * k1;double xm2 = xc2 + (xc3 - xc2) * k2;double ym2 = yc2 + (yc3 - yc2) * k2;// Resulting control points. Here smooth_value is mentioned// above coefficient K whose value should be in range [0...1].ctrl1_x = xm1 + (xc2 - xm1) * smooth_value + x1 - xm1;ctrl1_y = ym1 + (yc2 - ym1) * smooth_value + y1 - ym1;ctrl2_x = xm2 + (xc2 - xm2) * smooth_value + x2 - xm2;ctrl2_y = ym2 + (yc2 - ym2) * smooth_value + y2 - ym2;



And the source code of an approximation with a cubic Bezier curve.

// Number of intermediate points between two source ones,
// Actually, this value should be calculated in some way,
// Obviously, depending on the real length of the curve.
// But I don't know any elegant and fast solution for this
// problem.
#define NUM_STEPS 20void curve4(Polygon* p,double x1, double y1,   //Anchor1double x2, double y2,   //Control1double x3, double y3,   //Control2double x4, double y4)   //Anchor2
{double dx1 = x2 - x1;double dy1 = y2 - y1;double dx2 = x3 - x2;double dy2 = y3 - y2;double dx3 = x4 - x3;double dy3 = y4 - y3;double subdiv_step  = 1.0 / (NUM_STEPS + 1);double subdiv_step2 = subdiv_step*subdiv_step;double subdiv_step3 = subdiv_step*subdiv_step*subdiv_step;double pre1 = 3.0 * subdiv_step;double pre2 = 3.0 * subdiv_step2;double pre4 = 6.0 * subdiv_step2;double pre5 = 6.0 * subdiv_step3;double tmp1x = x1 - x2 * 2.0 + x3;double tmp1y = y1 - y2 * 2.0 + y3;double tmp2x = (x2 - x3)*3.0 - x1 + x4;double tmp2y = (y2 - y3)*3.0 - y1 + y4;double fx = x1;double fy = y1;double dfx = (x2 - x1)*pre1 + tmp1x*pre2 + tmp2x*subdiv_step3;double dfy = (y2 - y1)*pre1 + tmp1y*pre2 + tmp2y*subdiv_step3;double ddfx = tmp1x*pre4 + tmp2x*pre5;double ddfy = tmp1y*pre4 + tmp2y*pre5;double dddfx = tmp2x*pre5;double dddfy = tmp2y*pre5;int step = NUM_STEPS;// Suppose, we have some abstract object Polygon which// has method AddVertex(x, y), similar to LineTo in// many graphical APIs.// Note, that the loop has only operation add!while(step--){fx   += dfx;fy   += dfy;dfx  += ddfx;dfy  += ddfy;ddfx += dddfx;ddfy += dddfy;p->AddVertex(fx, fy);}p->AddVertex(x4, y4); // Last step must go exactly to x4, y4
}

You can download a working application for Windows that renders the lion, rotates and scales it, and generates random polygons. Interpolation with Bezier curves  (bezier_interpolation.zip). Press left mouse button and drag to rotate and scale the image around the center point. Press right mouse button and drag left-right to change the coefficient of smoothing (K). Value K=1 is about 100 pixels from the left border of the window. Each left double-click generates a random polygon. You can also rotate and scale it, and change K.

 
Copyright © 2002-2006 Maxim Shemanarev
Web Design and Programming Maxim Shemanarev

这篇关于一种简单的贝塞尔插值算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/924541

相关文章

Python中Request的安装以及简单的使用方法图文教程

《Python中Request的安装以及简单的使用方法图文教程》python里的request库经常被用于进行网络爬虫,想要学习网络爬虫的同学必须得安装request这个第三方库,:本文主要介绍P... 目录1.Requests 安装cmd 窗口安装为pycharm安装在pycharm设置中为项目安装req

SpringBoot简单整合ElasticSearch实践

《SpringBoot简单整合ElasticSearch实践》Elasticsearch支持结构化和非结构化数据检索,通过索引创建和倒排索引文档,提高搜索效率,它基于Lucene封装,分为索引库、类型... 目录一:ElasticSearch支持对结构化和非结构化的数据进行检索二:ES的核心概念Index:

GO语言实现串口简单通讯

《GO语言实现串口简单通讯》本文分享了使用Go语言进行串口通讯的实践过程,详细介绍了串口配置、数据发送与接收的代码实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 目录背景串口通讯代码代码块分解解析完整代码运行结果背景最近再学习 go 语言,在某宝用5块钱买了个

SpringBoot整合Apache Spark实现一个简单的数据分析功能

《SpringBoot整合ApacheSpark实现一个简单的数据分析功能》ApacheSpark是一个开源的大数据处理框架,它提供了丰富的功能和API,用于分布式数据处理、数据分析和机器学习等任务... 目录第一步、添加android依赖第二步、编写配置类第三步、编写控制类启动项目并测试总结ApacheS

C++简单日志系统实现代码示例

《C++简单日志系统实现代码示例》日志系统是成熟软件中的一个重要组成部分,其记录软件的使用和运行行为,方便事后进行故障分析、数据统计等,:本文主要介绍C++简单日志系统实现的相关资料,文中通过代码... 目录前言Util.hppLevel.hppLogMsg.hppFormat.hppSink.hppBuf

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Python实现简单封装网络请求的示例详解

《Python实现简单封装网络请求的示例详解》这篇文章主要为大家详细介绍了Python实现简单封装网络请求的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装依赖核心功能说明1. 类与方法概览2.NetHelper类初始化参数3.ApiResponse类属性与方法使用实

Python 基于http.server模块实现简单http服务的代码举例

《Python基于http.server模块实现简单http服务的代码举例》Pythonhttp.server模块通过继承BaseHTTPRequestHandler处理HTTP请求,使用Threa... 目录测试环境代码实现相关介绍模块简介类及相关函数简介参考链接测试环境win11专业版python

python连接sqlite3简单用法完整例子

《python连接sqlite3简单用法完整例子》SQLite3是一个内置的Python模块,可以通过Python的标准库轻松地使用,无需进行额外安装和配置,:本文主要介绍python连接sqli... 目录1. 连接到数据库2. 创建游标对象3. 创建表4. 插入数据5. 查询数据6. 更新数据7. 删除

Jenkins的安装与简单配置过程

《Jenkins的安装与简单配置过程》本文简述Jenkins在CentOS7.3上安装流程,包括Java环境配置、RPM包安装、修改JENKINS_HOME路径及权限、启动服务、插件安装与系统管理设置... 目录www.chinasem.cnJenkins安装访问并配置JenkinsJenkins配置邮件通知