常见排序算法(插入排序,希尔排序,选择排序,堆排序,冒泡排序,快速排序,归并排序,计数排序,基数排序,桶排序)

本文主要是介绍常见排序算法(插入排序,希尔排序,选择排序,堆排序,冒泡排序,快速排序,归并排序,计数排序,基数排序,桶排序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一.排序的概念

1.排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作

2.稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳定的;否则称为不稳定的。

3.内部排序:数据元素全部放在内存中的排序

4.外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序

二.常见的排序

接下来我们将一一讲解上述排序算法的实现

三.常见排序算法的实现

1.直接插入排序

1.1基本思想

把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到一个新的有序序列 。实际中我们玩扑克牌时,就用了插入排序的思想

1.2实现

    /*** 时间复杂度:O(N^2)*      最好情况下呢? 有序的时候  O(n)*      结论:对于直接插入排序来说  数据越有序 越快* 空间复杂度:O(1)* 稳定性:稳定*     一个稳定的排序  可以实现为不稳定的排序*     但是 一个本身就不稳定的排序  无法实现为稳定的排序** 场景:当前有一组数据 基本上趋于有序 那么就可以使用直接插入排序* 优点:越有序越快* @param array*/public static void insertSort(int[] array){for (int i = 1; i <array.length; i++) {int tmp=array[i];int j=i-1;for(;j>=0;j--){//将tmp与下标为0到i-1的作比较,若tmp大则将tmp赋给该下标后一位if(array[j]>tmp){array[j+1]=array[j];}else{break;}}array[j+1]=tmp;}}

2希尔排序

2.1基本思想

希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成多个组,所有距离为gap的记录分在同一组内,并对每一组内的记录进行排序。然后,取重复上述分组和排序的工作。当到达gap=1时,所有记录在统一组内排好序。

1. 希尔排序是对直接插入排序的优化。
2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。
3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排序的时间复杂度都不固定

2.2实现

    /*** 稳定性:不稳定* 时间复杂度:logN* @param array*/public static void shellSort(int[] array){int gap=array.length;while(gap>1){gap=gap/3+1;shell(array,gap);}}public static void shell(int[] array,int gap){for(int i=gap;i<array.length;i++){int tmp=array[i];int j=i-gap;for(;j>=0;j++){if(array[j]>tmp){array[j+gap]=array[j];}else{break;}}array[j+gap]=tmp;}}

3选择排序

3.1基本思想

每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完

3.2实现

    private static void swap(int[] array,int i,int j){int tmp=array[i];array[i]=array[j];array[j]=tmp;}/*** 时间复杂度: 和数据是否有序无关,均为O(N^2)* 空间复杂度:O(1)* 稳定性:不稳定的排序* @param array*/public static void selectSort1(int[] array){for(int i=0;i< array.length;i++){int minIndex=i;for(int j=i+1;j< array.length;j++){if(array[j]<array[minIndex]){minIndex=j;}}swap(array,minIndex,i);}}public static void selectSort(int[] array){int left=0;int right=array.length-1;while(left<right){int minIndex=left;int maxIndex=left;for(int i=left+1;i<=right;i++){if(array[i]<array[minIndex]){minIndex=i;}if(array[i]>array[maxIndex]){maxIndex=i;}}swap(array,minIndex,left);//如果最大值是left下标,那么上面交换完成以后,//最大值跑到了最小值的位置,所以要更新最大值下标if(maxIndex==left){maxIndex=minIndex;}swap(array,maxIndex,right);left++;right--;}}

4堆排序

4.1基本思想

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆来进行选择数据。需要注意的是排升序要建大堆,排降序建小堆

4.2实现

 public static void createBigHeap(int[] array){for (int parent=(array.length-1-1/)/2;parent>=0;parent--){siftDown(parent,array,array.length);}}private static void siftDown(int parent,int[] array,int end){int child=2*parent+1;while(child<end){if(child+1<end&&array[child]<array[child+1]){child++;}if(array[child]>array[parent]){swap(array,child,parent);parent=child;child=parent*2+1;}else{break;}}}/*** 时间复杂度:O(N*logN)* 空间复杂度:O(1)* 稳定性:不稳定* @param array*/public static void heapSort(int[] array){createBigHeap(array);int end=array.length-1;while(end>=0){swap(array,0,end);siftDown(0,array,end);end--;}}

5冒泡排序

5.1基本思想

根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置

5.2实现

/*** 时间复杂度:不管数据有序与否,不优化的情况下均为O(N^2)* 空间复杂度:1* 稳定性:稳定** @param array*/public static void bubbleSort(int[] array){for(int i=0;i<array.length-1;i++){boolean flg=false;for(int j=0;j< array.length-i-1;j++){if(array[j]>array[j+1]){swap(array,j,j+1);flg=true;}}if(!flg){//优化下,当数据有序,时间复杂度为O(N)break;}}}

6快速排序

6.1基本思想

任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止

6.2实现

public static void quickSort(int[] array) {quick(array, 0, array.length - 1);}private static void quick(int[] array, int start, int end) {if (start >= end) {return;}if (end - start + 1 <= 10) {insertSortRange(array, start, end);return;}int index = midThreeNum(array, start, end);swap(array, index, start);int par = partition(array, start, end);quick(array, start, par - 1);quick(array, par + 1, end);}public static void insertSortRange(int[] array, int left, int right) {for (int i = left + 1; i <= right; i++) {int tmp = array[i];int j = i - 1;for (; j >= left; j--) {if (array[j] > tmp) {array[j + 1] = array[j];} else {break;}}array[j + 1] = tmp;}}//返回值是中位数的下标private static int midThreeNum(int[] array, int left, int right) {int mid = (left + right) / 2;if (array[left] < array[right]) {if (array[mid] < array[left]) {return left;} else if (array[mid] > array[right]) {return right;} else {return mid;}} else {if (array[mid] < array[right]) {return right;} else if (array[mid] > array[left]) {return left;} else {return mid;}}}private static int partitionHoare(int[] array, int left, int right) {int i = left;int tmp = array[left];while (left < right) {while (left < right && array[right] >= tmp) {right--;}while (left < right && array[left] <= tmp) {left++;}swap(array, left, right);}swap(array, left, i);return left;}private static int partition(int[] array, int left, int right) {int tmp = array[left];while (left < right) {while (left < right && array[right] >= tmp) {right--;}array[left] = array[right];while (left < right && array[left] <= tmp) {left++;}array[right] = array[left];}array[left] = tmp;return left;}private static int partitionPre(int[] array, int left, int right) {int prev = left;int cur = left + 1;while (cur <= right) {if (array[cur] < array[left] && array[++prev] != array[cur]) {swap(array, cur, prev);}cur++;}swap(array, prev, left);return prev;}public static void quickSortNor(int[] array) {Stack<Integer> stack = new Stack<>();int left = 0;int right = array.length - 1;int par = partition(array, left, right);if (par > left + 1) {stack.push(left);stack.push(par - 1);}if (par < right - 1) {stack.push(par + 1);stack.push(right);}while (!stack.isEmpty()) {right = stack.pop();left = stack.pop();par = partition(array, left, right);if (par > left + 1) {stack.push(left);stack.push(par - 1);}if (par < right - 1) {stack.push(par + 1);stack.push(right);}}}

7归并排序

7.1基本思想

建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide andConquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并

7.2实现

 public static void mergeSort(int[] array) {mergeSortFun(array, 0, array.length - 1);}public static void mergeSortFun(int[] array, int left, int right) {if (left >= right) {return;}int mid = (right + left) / 2;mergeSortFun(array, left, mid);mergeSortFun(array, mid + 1, right);}private static void merge(int[] array,int left,int mid,int right){int[] tmp=new int[right-left+1];int k=0;int s1=left;int e1=mid;int s2=mid+1;int e2=right;while(s1<=e1&&s2<=e2){if(array[s1]<=array[s2]){tmp[k++]=array[s1++];}else{tmp[k++]=array[s2++];}}while (s1 <= e1) {tmp[k++] = array[s1++];}while (s2 <= e2) {tmp[k++] = array[s2++];}//走到这里 相当于tmp数组中 所有元素都有序了//接下来将tmp数组的内容拷贝到array数组当中for(int i=0;i<k;i++){array[i+left]=tmp[i];}}/*** 非递归实现归并排序*/public static void mergeSortNor(int[] array){int gap=1;while(gap<array.length){for(int i=0;i<array.length;i=i+2*gap){int left=i;int mid=left+gap-1;if(mid>=array.length){mid=array.length-1;}int right=mid+gap;if(right>=array.length){right=array.length-1;}merge(array,left,mid,right);}gap*=2;}}

8其他排序(计数排序、基数排序、桶排序)

8.1计数排序

计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用

操作步骤
1. 统计相同元素出现次数
2. 根据统计的结果将序列回收到原来的序列中

/*** 计数排序* 时间复杂度:O(N+范围)* 空间复杂度:O(范围)* 稳定性:稳定*/public static void countSort(int[] array){//1.遍历数组,求最大值与最小值int maxVal=array[0];int minVal=array[0];for(int i=0;i<array.length;i++){if(maxVal<array[i]){maxVal=array[i];}if(minVal>array[i]){minVal=array[i];}}//2.定义count数组int[] count=new int[maxVal-minVal+1];//3.遍历array数组,把值放入计数数组中for(int i=0;i<array.length;i++){int val=array[i];count[val-minVal]++;}//4.以上3步完成之后,计数数组已经存好了相应的数据//接下来 开始遍历数组 计数数组int index=0;for(int i=0;i<count.length;i++){while(count[i]>0){array[index]=i+minVal;index++;count[i]--;}}}

 

8.2基数排序

1.10 基数排序 | 菜鸟教程 (runoob.com)

8.3桶排序

1.9 桶排序 | 菜鸟教程 (runoob.com)


如果上述内容对您有帮助,希望给个三连谢谢! 

 

这篇关于常见排序算法(插入排序,希尔排序,选择排序,堆排序,冒泡排序,快速排序,归并排序,计数排序,基数排序,桶排序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/923959

相关文章

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

Java 方法重载Overload常见误区及注意事项

《Java方法重载Overload常见误区及注意事项》Java方法重载允许同一类中同名方法通过参数类型、数量、顺序差异实现功能扩展,提升代码灵活性,核心条件为参数列表不同,不涉及返回类型、访问修饰符... 目录Java 方法重载(Overload)详解一、方法重载的核心条件二、构成方法重载的具体情况三、不构

SQL中如何添加数据(常见方法及示例)

《SQL中如何添加数据(常见方法及示例)》SQL全称为StructuredQueryLanguage,是一种用于管理关系数据库的标准编程语言,下面给大家介绍SQL中如何添加数据,感兴趣的朋友一起看看吧... 目录在mysql中,有多种方法可以添加数据。以下是一些常见的方法及其示例。1. 使用INSERT I

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

ModelMapper基本使用和常见场景示例详解

《ModelMapper基本使用和常见场景示例详解》ModelMapper是Java对象映射库,支持自动映射、自定义规则、集合转换及高级配置(如匹配策略、转换器),可集成SpringBoot,减少样板... 目录1. 添加依赖2. 基本用法示例:简单对象映射3. 自定义映射规则4. 集合映射5. 高级配置匹

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧