OpenCV从入门到精通实战(五)——dnn加载深度学习模型

2024-04-19 06:28

本文主要是介绍OpenCV从入门到精通实战(五)——dnn加载深度学习模型,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从指定路径读取图像文件、利用OpenCV进行图像处理,以及使用Caffe框架进行深度学习预测的过程。
下面是程序的主要步骤和对应的实现代码总结:

1. 导入必要的工具包和模型

程序开始先导入需要的库osnumpycv2,同时导入utils_paths模块,后者用于处理图像路径。接着,读取Caffe模型和配置文件,这些文件提供了使用预训练深度学习模型进行图像分类的基础。

import utils_paths
import numpy as np
import cv2net = cv2.dnn.readNetFromCaffe("bvlc_googlenet.prototxt", "bvlc_googlenet.caffemodel")

2. 读取图像文件

使用utils_paths.list_images函数遍历指定目录,获取所有图像文件的路径。

imagePaths = sorted(list(utils_paths.list_images("images/")))

3. 图像预处理

选择路径列表中的第一个图像进行读取,调整其大小以符合模型输入需求,并通过cv2.dnn.blobFromImage创建适合Caffe模型的输入blob。

image = cv2.imread(imagePaths[0])
resized = cv2.resize(image, (224, 224))
blob = cv2.dnn.blobFromImage(resized, 1, (224, 224), (104, 117, 123))

4. 模型预测和结果展示

设定模型输入,执行前向传播获取预测结果,找出概率最高的类别,并在图像上显示预测标签和概率。

net.setInput(blob)
preds = net.forward()
idx = np.argsort(preds[0])[::-1][0]
text = "Label: {}, {:.2f}%".format(classes[idx], preds[0][idx] * 100)
cv2.putText(image, text, (5, 25),  cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)
cv2.imshow("Image", image)
cv2.waitKey(0)

5. 批量图像处理

对多个图像执行上述步骤,生成多图像的输入blob,并对每个图像执行预测,展示结果。

images = []
for p in imagePaths[1:]:image = cv2.imread(p)image = cv2.resize(image, (224, 224))images.append(image)blob = cv2.dnn.blobFromImages(images, 1, (224, 224), (104, 117, 123))
net.setInput(blob)
preds = net.forward()for (i, p) in enumerate(imagePaths[1:]):image = cv2.imread(p)idx = np.argsort(preds[i])[::-1][0]text = "Label: {}, {:.2f}%".format(classes[idx], preds[i][idx] * 100)cv2.putText(image, text, (5, 25),  cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2)cv2.imshow("Image", image)cv2.waitKey(0)

完整代码

utils_paths.py

import osimage_types = (".jpg", ".jpeg", ".png", ".bmp", ".tif", ".tiff")def list_images(basePath, contains=None):# return the set of files that are validreturn list_files(basePath, validExts=image_types, contains=contains)def list_files(basePath, validExts=None, contains=None):# loop over the directory structurefor (rootDir, dirNames, filenames) in os.walk(basePath):# loop over the filenames in the current directoryfor filename in filenames:# if the contains string is not none and the filename does not contain# the supplied string, then ignore the fileif contains is not None and filename.find(contains) == -1:continue# determine the file extension of the current fileext = filename[filename.rfind("."):].lower()# check to see if the file is an image and should be processedif validExts is None or ext.endswith(validExts):# construct the path to the image and yield itimagePath = os.path.join(rootDir, filename)yield imagePath

blob_from_images.py

# 导入工具包
import utils_paths
import numpy as np
import cv2# 标签文件处理
rows = open("synset_words.txt").read().strip().split("\n")
classes = [r[r.find(" ") + 1:].split(",")[0] for r in rows]# Caffe所需配置文件
net = cv2.dnn.readNetFromCaffe("bvlc_googlenet.prototxt","bvlc_googlenet.caffemodel")# 图像路径
imagePaths = sorted(list(utils_paths.list_images("images/")))# 图像数据预处理
image = cv2.imread(imagePaths[0])
resized = cv2.resize(image, (224, 224))
# image scalefactor size mean swapRB 
blob = cv2.dnn.blobFromImage(resized, 1, (224, 224), (104, 117, 123))
print("First Blob: {}".format(blob.shape))# 得到预测结果
net.setInput(blob)
preds = net.forward()# 排序,取分类可能性最大的
idx = np.argsort(preds[0])[::-1][0]
text = "Label: {}, {:.2f}%".format(classes[idx],preds[0][idx] * 100)
cv2.putText(image, text, (5, 25),  cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2)# 显示
cv2.imshow("Image", image)
cv2.waitKey(0)# Batch数据制作
images = []# 方法一样,数据是一个batch
for p in imagePaths[1:]:image = cv2.imread(p)image = cv2.resize(image, (224, 224))images.append(image)# blobFromImages函数,注意有s
blob = cv2.dnn.blobFromImages(images, 1, (224, 224), (104, 117, 123))
print("Second Blob: {}".format(blob.shape))# 获取预测结果
net.setInput(blob)
preds = net.forward()
for (i, p) in enumerate(imagePaths[1:]):image = cv2.imread(p)idx = np.argsort(preds[i])[::-1][0]text = "Label: {}, {:.2f}%".format(classes[idx],preds[i][idx] * 100)cv2.putText(image, text, (5, 25),  cv2.FONT_HERSHEY_SIMPLEX,0.7, (0, 0, 255), 2)cv2.imshow("Image", image)cv2.waitKey(0)

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

以下是后续代码的改进:

6. 异常处理和验证

在处理文件读取和图像处理时,加入异常处理可以避免在文件不存在或损坏时程序崩溃。

try:image = cv2.imread(imagePath)if image is None:raise ValueError("无法读取图像: {}".format(imagePath))resized = cv2.resize(image, (224, 224))
except Exception as e:print("处理图像时发生错误: ", e)

7. 性能优化

对于图像处理和预测,尤其是批量操作时,可以通过并行处理技术来加速这些操作。例如,使用Python的concurrent.futures模块进行并行读取和预处理图像。

from concurrent.futures import ThreadPoolExecutordef process_image(path):image = cv2.imread(path)image = cv2.resize(image, (224, 224))return imagewith ThreadPoolExecutor() as executor:images = list(executor.map(process_image, imagePaths))

8. 动态输入和命令行工具

将脚本转换为可接受命令行参数的形式,使其更灵活,能够通过命令行直接指定图片路径、模型文件等。

import argparseparser = argparse.ArgumentParser(description='图像分类预测')
parser.add_argument('--image_dir', type=str, required=True, help='图像目录路径')
parser.add_argument('--model', type=str, required=True, help='模型文件路径')
args = parser.parse_args()imagePaths = sorted(list(utils_paths.list_images(args.image_dir)))
net = cv2.dnn.readNetFromCaffe("bvlc_googlenet.prototxt", args.model)

9. GUI界面

为了使程序更友好,可以开发一个基于图形用户界面的应用,允许用户通过图形界面选择图像和观看结果,而不是仅限于命令行。

import tkinter as tk
from tkinter import filedialogdef load_image():path = filedialog.askopenfilename()return cv2.imread(path), pathroot = tk.Tk()
load_button = tk.Button(root, text='加载图像', command=load_image)
load_button.pack()
root.mainloop()

初始代码 下载地址 dnn加载深度学习模型

这篇关于OpenCV从入门到精通实战(五)——dnn加载深度学习模型的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/916806

相关文章

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模