AI大模型探索之路-应用篇15:GLM大模型-ChatGLM3-6B私有化本地部署

2024-04-18 09:12

本文主要是介绍AI大模型探索之路-应用篇15:GLM大模型-ChatGLM3-6B私有化本地部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

前言

一、ChatGLM3-6B 简介说明

二、ChatGLM3-6B 资源评估

三、购买云服务器

四、git拉取GLM

五、pip安装依赖

六、运行测试

七、本地部署安装

总结


前言

ChatGLM3-6B 是 OpenAI 推出的一款强大的自然语言处理模型,它在前两代模型的基础上进行了优化和改进,具有更高的性能和更广泛的应用场景。本文将从技术角度对 ChatGLM3-6B 进行详细介绍,包括其特点、资源评估、购买云服务器、git拉取GLM、pip安装依赖、运行测试以及本地部署安装等方面的内容。希望通过本文的介绍,能够帮助大家更好地理解和使用 ChatGLM3-6B 模型。

一、ChatGLM3-6B 简介说明

ChatGLM3-6B 是一款基于深度学习的自然语言处理模型,它具有以下特点:

1)更强大的基础模型: ChatGLM3-6B 的基础模型 ChatGLM3-6B-Base 采用了更多样的训练数据、更充分的训练步数和更合理的训练策略。在语义、数学、推理、代码、知识等不同角度的数据集上测评显示,* ChatGLM3-6B-Base 具有在 10B 以下的基础模型中最强的性能*。

2)更完整的功能支持: ChatGLM3-6B 采用了全新设计的 Prompt 格式 ,除正常的多轮对话外。同时原生支持工具调用(Function Call)、代码执行(Code Interpreter)和 Agent 任务等复杂场景。

3)更全面的开源序列: 除了对话模型 ChatGLM3-6B 外,还开源了基础模型 ChatGLM3-6B-Base 、长文本对话模型 ChatGLM3-6B-32K 和进一步强化了对于长文本理解能力的 ChatGLM3-6B-128K

二、ChatGLM3-6B 资源评估

初步粗略估算:

1)如果精度为FP32, 需要GPU显存大概 24G左右,如果考虑其他因素再加一点32G左右。
2)如果精度为FP16, 需要GPU显存大概 12G左右,如果考虑其他因素再加一点16G左右。
3)如果量化为int8, 需要GPU显存大概 6G左右,如果考虑其他因素再加一点8G左右。

由于默认情况下,ChatGLM3-6B模型以 FP16 精度加载,因此大概需要16G左右;
如果显存不够需要修改源码进行量化处理,源码参考如下:
model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True)
.quantize(8).cuda()

三、购买云服务器

在​​​​​​​AutoDL租一个按量收费的服务器;大家可自行选择合适的云平台,购买云服务器​​​​​​​

选择最新的Pytorch基础镜像(核心需要pytorch库)

登录云服务器

学术加速一波,执行命令:source /etc/network_turbo

四、git拉取GLM

1)下载GLM

git clone https://github.com/THUDM/ChatGLM3

2)下载完成后进入ChatGLM3目录

cd ChatGLM3

五、pip安装依赖

执行下面的pip命令,安装依赖(核心需要pytorch库)

pip install -r requirements.txt

安装过程中提示tensorboard依赖的protobuf版比较低,服务器中protobuf版本过高

有两种方案:

1)降低protobuf的版本到满足tensorboard 2.15.1的要求。你可以使用pip命令来卸载当前的protobuf并安装一个兼容的版本。例如:
pip uninstall protobuf
pip install protobuf==4.24
2)升级你的tensorboard版本到一个与当前protobuf版本兼容的版本。你需要查找最新的tensorboard版本,然后使用pip命令来安装。例如:
pip install --upgrade tensorboard

经尝试采用第一种失败后,改用方案二执行成功。

再重新执行:pip install -r requirements.txt,执行成功

六、运行测试

进入basic_demo目录,查看测试的demo

执行测试demo :   python cli_demo.py

这个目录放了各种测试用的demo,为了方便使用,本次主要采用命令行客户端的方式测试

第一次执行时,中途链接huggingface超时失败,惊出一身冷汗

第二次执行后执行成功(终于出现了期待已久的画面)

赶紧测一波 ,

测试效果赶紧很不错,精准度方面也比较高;另外,感受最明显的特点就是,“速度快”,

基本上在我提问完后,ChatGLM秒回结果,和调用OpenAI在线API相比,直接原地起飞。

七、本地部署安装

由于本地电脑GPU资源不足,无法实操;主要以云服务器部署为主;本地安装方式仅做记录备用

1. Python环境准备

建议安装anaconda(里面集成了很多科学计算的库集成了jupyter等在线编译工具)

网站会自动识别电脑版本匹配工具

2. GPU版PyTorch安装

PyTorch是一个开源的Python机器学习库,基于Torch;它提供了必要的模型管理和训练工具,以及分布式训练能力、易用性、以及与其他工具的良好集成;用于自然语言处理等应用程序。PyTorch既可以看作加入了GPU支持的numpy,同时也可以看成一个拥有自动求导功能的强大的深度神经网络。

ChatGLM3-6B运行过程需要借助PyTorch来完成相关计算。

需要确认是否已经安装2.0版本及以上的GPU版本的PyTorch;

1)验证是否安装

#导入模块
import torch#查看Pytorch的版本
torch.__version__#测试当前的touch版本与当前服务器的CUDA是否兼容
print(torch.cuda.is_available())

2)安装

#卸载当前pytorch版本
pip uninstall torch torchvision torchaudio#安装新的pytorch版本
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

3. 验证PyTorch与CUDA是否兼容

CUDA是Compute Unified Device Architecture的缩写,它是由NVIDIA公司推出的一个并行计算平台和应用程序接口(API),允许软件开发者和软件工程师使用NVIDIA的图形处理单元(GPU)进行通用计算。简单来说,CUDA让开发者能够利用NVIDIA GPU强大的计算能力来加速除了图形处理以外的科学和工程计算,从而提供比传统CPU更高效的性能。

1)验证是否兼容

#导入模块
import torch#测试当前的touch版本与当前服务器的CUDA是否兼容
print(torch.cuda.is_available())

2)重新安装

在CUDA官网下载最新版CUDA toolkit(CUDA安装工具)进行安装或者更新至12.1版,

3)重新验证

4. 拉取ChatGLM3工程

创建一个目录使用GIT拉取工程代码

git clone https://github.com/THUDM/ChatGLM3cd ChatGLM3

下载完成后,能够在你的文件目录下看到完整的ChatGLM3安装文件

5. 安装ChatGLM3-6B项目依赖库

pip install -r requirements.txt

安装过程若出现类似typing-extensions或fastapi等非核心库不兼容性报错,并不会影响最终模型运行,不用进行额外处理。完成了相关依赖库的安装之后,即可尝试进行模型调用了。

6. 运行测试

测试方式1:

python cli_demo.py

测试方式2:

streamlit run web_demo2.py

总结

本文从技术角度对 ChatGLM3-6B 进行了深入介绍,包括其特点、资源评估、购买云服务器、git 拉取 GLM、pip 安装依赖、运行测试以及本地部署安装等方面的内容。希望通过本文的介绍,能够帮助大家更好地理解和使用 ChatGLM3-6B 模型。

文章若有瑕疵,恳请不吝赐教;若有所触动或助益,还望各位老铁多多关注并给予支持。

这篇关于AI大模型探索之路-应用篇15:GLM大模型-ChatGLM3-6B私有化本地部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914356

相关文章

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

redis-sentinel基础概念及部署流程

《redis-sentinel基础概念及部署流程》RedisSentinel是Redis的高可用解决方案,通过监控主从节点、自动故障转移、通知机制及配置提供,实现集群故障恢复与服务持续可用,核心组件包... 目录一. 引言二. 核心功能三. 核心组件四. 故障转移流程五. 服务部署六. sentinel部署

Java+AI驱动实现PDF文件数据提取与解析

《Java+AI驱动实现PDF文件数据提取与解析》本文将和大家分享一套基于AI的体检报告智能评估方案,详细介绍从PDF上传、内容提取到AI分析、数据存储的全流程自动化实现方法,感兴趣的可以了解下... 目录一、核心流程:从上传到评估的完整链路二、第一步:解析 PDF,提取体检报告内容1. 引入依赖2. 封装

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

使用Java读取本地文件并转换为MultipartFile对象的方法

《使用Java读取本地文件并转换为MultipartFile对象的方法》在许多JavaWeb应用中,我们经常会遇到将本地文件上传至服务器或其他系统的需求,在这种场景下,MultipartFile对象非... 目录1. 基本需求2. 自定义 MultipartFile 类3. 实现代码4. 代码解析5. 自定

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N