[大模型]MiniCPM-2B-chat transformers 部署调用

2024-04-18 07:44

本文主要是介绍[大模型]MiniCPM-2B-chat transformers 部署调用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MiniCPM-2B-chat transformers 部署调用

MiniCPM-2B-chat 介绍

MiniCPM 是面壁智能与清华大学自然语言处理实验室共同开源的系列端侧大模型,主体语言模型 MiniCPM-2B 仅有 24亿(2.4B)的非词嵌入参数量。

经过 SFT 后,MiniCPM 在公开综合性评测集上,MiniCPM 与 Mistral-7B相近(中文、数学、代码能力更优),整体性能超越 Llama2-13B、MPT-30B、Falcon-40B 等模型。
经过 DPO 后,MiniCPM 在当前最接近用户体感的评测集 MTBench上,MiniCPM-2B 也超越了 Llama2-70B-Chat、Vicuna-33B、Mistral-7B-Instruct-v0.1、Zephyr-7B-alpha 等众多代表性开源大模型。
以 MiniCPM-2B 为基础构建端侧多模态大模型 MiniCPM-V,整体性能在同规模模型中实现最佳,超越基于 Phi-2 构建的现有多模态大模型,在部分评测集上达到与 9.6B Qwen-VL-Chat 相当甚至更好的性能。
经过 Int4 量化后,MiniCPM 可在手机上进行部署推理,流式输出速度略高于人类说话速度。MiniCPM-V 也直接跑通了多模态大模型在手机上的部署。
一张1080/2080可高效参数微调,一张3090/4090可全参数微调,一台机器可持续训练 MiniCPM,二次开发成本较低。

环境准备

在autodl平台中租一个单卡3090等24G显存的显卡机器,如下图所示镜像选择PyTorch–>2.1.0–>3.10(ubuntu22.04)–>12.1
接下来打开刚刚租用服务器的JupyterLab, 图像 并且打开其中的终端开始环境配置、模型下载和运行演示。
在这里插入图片描述

接下来打开刚刚租用服务器的JupyterLab,并且打开其中的终端开始环境配置、模型下载和运行demo

pip换源和安装依赖包

# 升级pip
python -m pip install --upgrade pip
# 更换 pypi 源加速库的安装
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
pip install modelscope transformers sentencepiece accelerate langchainMAX_JOBS=8 pip install flash-attn --no-build-isolation

注意:flash-attn 安装会比较慢,大概需要十几分钟。

模型下载

使用 modelscope 中的snapshot_download函数下载模型,第一个参数为模型名称,参数cache_dir为模型的下载路径。

/root/autodl-tmp 路径下新建 download.py 文件并在其中输入以下内容,粘贴代码后记得保存文件,如下图所示。并运行 python /root/autodl-tmp/download.py执行下载,模型大小为 10 GB,下载模型大概需要 5~10 分钟

import torch
from modelscope import snapshot_download, AutoModel, AutoTokenizer
import os
model_dir = snapshot_download('OpenBMB/MiniCPM-2B-sft-fp32', cache_dir='/root/autodl-tmp', revision='master')

代码准备

为便捷构建 LLM 应用,我们需要基于本地部署的 MiniCPM-2B-chat,自定义一个 LLM 类,将 MiniCPM-2B-chat 接入到 LangChain 框架中。完成自定义 LLM 类之后,可以以完全一致的方式调用 LangChain 的接口,而无需考虑底层模型调用的不一致。

基于本地部署的 MiniCPM-2B-chat 自定义 LLM 类并不复杂,我们只需从 LangChain.llms.base.LLM 类继承一个子类,并重写构造函数与 _call 函数即可:

from langchain.llms.base import LLM
from typing import Any, List, Optional
from langchain.callbacks.manager import CallbackManagerForLLMRun
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
import torchclass MiniCPM_LLM(LLM):# 基于本地 InternLM 自定义 LLM 类tokenizer : AutoTokenizer = Nonemodel: AutoModelForCausalLM = Nonedef __init__(self, model_path :str):# model_path: InternLM 模型路径# 从本地初始化模型super().__init__()print("正在从本地加载模型...")self.tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)self.model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True,torch_dtype=torch.bfloat16,  device_map="auto")self.model = self.model.eval()print("完成本地模型的加载")def _call(self, prompt : str, stop: Optional[List[str]] = None,run_manager: Optional[CallbackManagerForLLMRun] = None,**kwargs: Any):# 通过模型获得输出responds, history = self.model.chat(self.tokenizer, prompt, temperature=0.5, top_p=0.8, repetition_penalty=1.02)return responds@propertydef _llm_type(self) -> str:return "MiniCPM_LLM"

调用

然后就可以像使用任何其他的langchain大模型功能一样使用了。

llm = MiniCPM_LLM('/root/autodl-tmp/OpenBMB/miniCPM-bf32')llm('你好')

如下图所示:

在这里插入图片描述

这篇关于[大模型]MiniCPM-2B-chat transformers 部署调用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/914168

相关文章

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到

python如何调用java的jar包

《python如何调用java的jar包》这篇文章主要为大家详细介绍了python如何调用java的jar包,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录一、安装包二、使用步骤三、代码演示四、自己写一个jar包五、打包步骤六、方法补充一、安装包pip3 install

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

详解如何使用Python从零开始构建文本统计模型

《详解如何使用Python从零开始构建文本统计模型》在自然语言处理领域,词汇表构建是文本预处理的关键环节,本文通过Python代码实践,演示如何从原始文本中提取多尺度特征,并通过动态调整机制构建更精确... 目录一、项目背景与核心思想二、核心代码解析1. 数据加载与预处理2. 多尺度字符统计3. 统计结果可

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

使用Python实现调用API获取图片存储到本地的方法

《使用Python实现调用API获取图片存储到本地的方法》开发一个自动化工具,用于从JSON数据源中提取图像ID,通过调用指定API获取未经压缩的原始图像文件,并确保下载结果与Postman等工具直接... 目录使用python实现调用API获取图片存储到本地1、项目概述2、核心功能3、环境准备4、代码实现

使用@Cacheable注解Redis时Redis宕机或其他原因连不上继续调用原方法的解决方案

《使用@Cacheable注解Redis时Redis宕机或其他原因连不上继续调用原方法的解决方案》在SpringBoot应用中,我们经常使用​​@Cacheable​​注解来缓存数据,以提高应用的性能... 目录@Cacheable注解Redis时,Redis宕机或其他原因连不上,继续调用原方法的解决方案1

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.