数学经典思想:数学归纳法 理解+实战

2024-04-17 04:58

本文主要是介绍数学经典思想:数学归纳法 理解+实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

导语:

“数学归纳法”大家应该听起来并不陌生,从初中到大学应该都有使用这种思想去解题的经历。只不过在不同阶段的学习中难度不同,理解程度不同。最近在做一些高数方面相关的练习的时候用到的蛮多的,所以今天拎出来在自我学习巩固的过程中也可以和大家分享讨论。

1.定义

数学归纳法(Mathematical Induction, MI)是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构,例如:集合论中的树。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。

在数论中,数学归纳法是以一种不同的方式来证明任意一个给定的情形都是正确的(第一个,第二个,第三个,一直下去概不例外)的数学定理。

虽然数学归纳法名字中有“归纳”,但是数学归纳法并非不严谨的归纳推理法,它属于完全严谨的演绎推理法。事实上,所有数学证明都是演绎法。

tip: 定义不再赘述,具体参见百度百科即可

2.MI思想

三部曲: 归纳 -> 猜想 -> 证明

一般地,证明一个与正整数n有关的命题,可按下列步骤进行:

(1)归纳奠基:证明当n取第一个值n0(n0∈N∗)时命题成立;
(2)归纳递推:假设当n=k(k≥n0,k∈N∗)时命题成立,推出当n=k+1时命题也成立。
只要完成这两个步骤,就可以断定命题对从n0开始的所有正整数n都成立.上述证明方法叫做数学归纳法。

注意事项:

1.凡是与自然数有关的命题,或探索性问题都可以使用数学归纳法来证明。

2.两个步骤缺一不可,第一步是归纳奠基,第二步是归纳递推。 第一步的初值不一定是n0=1,还有可能是n0=2或n0=3,比如涉及到多边形的问题时,其初值往往为n0=3。

3.第二步在证明n=k+1时命题成立的时候,必须使用n=k时的归纳假设,否则绕过归纳假设得出的结论就是不可靠的,是错误的。

4.数学归纳法的难点其一,就是从n=k到n=k+1时的项数的变化情况,大多情况下,增加项数为1项,但不是所有题目都增加的项数为1项,当k在指数位置时,增加的项数往往不止一项。

5.在证明n=k+1(k∈N∗,k≥n0)时命题成立的常用技巧:

①分析n=k+1时命题与n=k时命题形式的差别,确定证明目标。

②证明恒等式时常用乘法公式、因式分解、添拆项配方、通分等等变形技巧,证明不等式时常用分析法、综合法、放缩法、做差法等。

③可能用到公式:(a+b)3=a3+3a2b+3ab2+b3,a3+b3=(a+b)(a2−ab+b2)

3.实战

ex1:
在这里插入图片描述

ex2:
在这里插入图片描述
ex3:
在这里插入图片描述

这篇关于数学经典思想:数学归纳法 理解+实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910835

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Oracle Scheduler任务故障诊断方法实战指南

《OracleScheduler任务故障诊断方法实战指南》Oracle数据库作为企业级应用中最常用的关系型数据库管理系统之一,偶尔会遇到各种故障和问题,:本文主要介绍OracleSchedul... 目录前言一、故障场景:当定时任务突然“消失”二、基础环境诊断:搭建“全局视角”1. 数据库实例与PDB状态2

Git进行版本控制的实战指南

《Git进行版本控制的实战指南》Git是一种分布式版本控制系统,广泛应用于软件开发中,它可以记录和管理项目的历史修改,并支持多人协作开发,通过Git,开发者可以轻松地跟踪代码变更、合并分支、回退版本等... 目录一、Git核心概念解析二、环境搭建与配置1. 安装Git(Windows示例)2. 基础配置(必

MyBatis分页查询实战案例完整流程

《MyBatis分页查询实战案例完整流程》MyBatis是一个强大的Java持久层框架,支持自定义SQL和高级映射,本案例以员工工资信息管理为例,详细讲解如何在IDEA中使用MyBatis结合Page... 目录1. MyBATis框架简介2. 分页查询原理与应用场景2.1 分页查询的基本原理2.1.1 分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

SpringBoot 多环境开发实战(从配置、管理与控制)

《SpringBoot多环境开发实战(从配置、管理与控制)》本文详解SpringBoot多环境配置,涵盖单文件YAML、多文件模式、MavenProfile分组及激活策略,通过优先级控制灵活切换环境... 目录一、多环境开发基础(单文件 YAML 版)(一)配置原理与优势(二)实操示例二、多环境开发多文件版

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱