代码随想录算法训练营第四十一天| 343. 整数拆分,96.不同的二叉搜索树

本文主要是介绍代码随想录算法训练营第四十一天| 343. 整数拆分,96.不同的二叉搜索树,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目与题解

343. 整数拆分

题目链接:343. 整数拆分

代码随想录题解:343. 整数拆分

视频讲解:动态规划,本题关键在于理解递推公式!| LeetCode:343. 整数拆分_哔哩哔哩_bilibili

解题思路:

        一眼懵,直接看答案了

看完代码随想录之后的想法 

        前一天的题是由dp[i-2]和dp[i-1],递推出当前结果dp[i]。这题更复杂一些,是要根据dp[0]到dp[i-1],推算dp[i]的结果。

        对于数字i,可以分解为两个数字的和:j和i-j,因此求分解i的乘积,就是求j和分解i-j之后二者的乘积。那么如果dp[i]定义为数字i的最大乘积和,那么对于dp[i],遍历j from 1 to i - 1, 递推公式为求dp[i-j]*j和j * (i - j) 中的最大值。

        为避免重复计算,j最多取到i的一半。

class Solution {public int integerBreak(int n) {int[] dp = new int[n+1];if (n >= 2) dp[2] = 1;for (int i = 3; i <= n; i++) {for (int j = 1; j <= i/2; j++) {dp[i] = Math.max(dp[i], Math.max(j*(i-j), dp[i-j]*j));}}return dp[n];}
}

j怎么就不拆分呢?

j是从1开始遍历,拆分j的情况,在遍历j的过程中其实都计算过了。那么从1遍历j,比较(i - j) * j和dp[i - j] * j 取最大的。递推公式:dp[i] = max(dp[i], max((i - j) * j, dp[i - j] * j));

也可以这么理解,j * (i - j) 是单纯的把整数拆分为两个数相乘,而j * dp[i - j]是拆分成两个以及两个以上的个数相乘。

如果定义dp[i - j] * dp[j] 也是默认将一个数强制拆成4份以及4份以上了。

所以递推公式:dp[i] = max({dp[i], (i - j) * j, dp[i - j] * j});

 还需要注意,初始化的方式是跟着定义走的,如果求的是max(dp[i - j] * dp[j]),为了计算正确,初始化的结果会跟dp[i]定义不符,容易出错。

遇到的困难

        第一次碰到这种题,想不到

96.不同的二叉搜索树 

题目链接:96.不同的二叉搜索树 

代码随想录题解:​​​​​​​96.不同的二叉搜索树 

视频讲解:动态规划找到子状态之间的关系很重要!| LeetCode:96.不同的二叉搜索树_哔哩哔哩_bilibili

解题思路:

        这题跟上面一题有一点类似,同样是要用多个dp[i-j]的值推出dp[i]。

        题目要求用1-n的数字构成不同的二叉搜索树,其实可以分解为,0-j-1的数字构成左子树,j为根节点,j到i构成右子树,那么

dp[i] = \sum_{1}^{i}dp[j-1]*dp[i-j]

        初始化dp[0]=dp[1]=0即可。

class Solution {public int numTrees(int n) {int[] dp = new int[n+1];dp[0] = 1;dp[1] = 1;for (int i = 2; i <= n; i++) {for (int j = 1; j <= i ; j++) {dp[i] += dp[j-1] * dp[i-j];}}return dp[n];}
}

看完代码随想录之后的想法 

        以dp[3]为例

dp[3],就是 元素1为头结点搜索树的数量 + 元素2为头结点搜索树的数量 + 元素3为头结点搜索树的数量

元素1为头结点搜索树的数量 = 右子树有2个元素的搜索树数量 * 左子树有0个元素的搜索树数量

元素2为头结点搜索树的数量 = 右子树有1个元素的搜索树数量 * 左子树有1个元素的搜索树数量

元素3为头结点搜索树的数量 = 右子树有0个元素的搜索树数量 * 左子树有2个元素的搜索树数量

关键是看如何去分解,分解后如何正确确定遍历的上下限。

遇到的困难

        一开始写的时候没有想清楚遍历的边界,初始化的时候也有点糊涂,所以错了好几处。要记住按定义初始化dp,然后确定遍历上下界后,最好通过几个举例得到结果,保证边界正确。        

今日收获

        学会了如何用分解的方法使用dp,难度提升了很多。

这篇关于代码随想录算法训练营第四十一天| 343. 整数拆分,96.不同的二叉搜索树的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/910764

相关文章

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN